×

zbMATH — the first resource for mathematics

On Putcha’s Q-semigroups. (English) Zbl 0429.20051

MSC:
20M10 General structure theory for semigroups
20M12 Ideal theory for semigroups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cherubini Spoletini, A. e A. Varisco,Sui semigruppi fortemente reversibili archimedei, Istituto Lombardo (Rend. Sc.) 110, (1976), 313–321. · Zbl 0401.20057
[2] Cherubini Spoletini, A. e A. Varisco,Sui semigruppi fortemente reversibili separativi, Istituto Lombardo (Rend. Sc.) 111, (1977), 31–43. · Zbl 0391.20045
[3] Cherubini Spoletini, A. e A. Varisco,Sui semigruppi i cui sottosemigruppi propri sono t-archimedei, Istituto Lombardo (Rend. Sc.) 112, (1978). · Zbl 0434.20037
[4] Clifford, A.H. and G.B. Breston,The algebraic theory of semigroups, Amer. Math. Soc., Providence, R.I., Vol. 1, 1961.
[5] Levin, R. and T. Tamura,Notes on commutative power joined semigroups, Pacific J. Math. 35, (1970), 673–679. · Zbl 0215.40003
[6] Nagore, C.S.H.,Quasi commutative Q-semigroups, Semigroup Forum 15, (1978), 189–193. · Zbl 0378.20046
[7] Nordahl, T.E.,Commutative semigroups whose proper subsemigroups are power joined, Semigroup Forum 6, (1973), 35–41. · Zbl 0275.20105
[8] Petrich, M.,Introduction to semigroups, Merrill Books, Columbus, Ohio, 1973. · Zbl 0321.20037
[9] Petrich, M.,Lectures in semigroups, Akad. Verlag, Berlin-Wiley & Sons, 1977. · Zbl 0369.20036
[10] Putcha, M.S.,Band of t-archimedean semigroups, Semigroup Forum 6, (1973), 232–239. · Zbl 0262.20070
[11] Tamura, T.,On Putcha’s theorem concerning semilattice of archimedean semigroups, Semigroup Forum 4, (1972), 83–86 · Zbl 0256.20075
[12] Thierrin, G.,Sur quelques propriétés de certaines classes de demi-groupes, C. R. Acad. Sci. Paris 239, (1954), 1335–1337. · Zbl 0056.01902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.