×

zbMATH — the first resource for mathematics

Harmonic differentials and closed geodesics on a Riemann surface. (English) Zbl 0429.30038

MSC:
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
53C22 Geodesics in global differential geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bateman Manuscript Project, Higher Transcendental Functions, Vol. II, New York: McGraw-Hill 1953
[2] Bateman Manuscript Project, Tables of Integral Transforms, Vol. I, New York: McGraw-Hill (1953)
[3] Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une variété Riemannienne. Lecture Notes in Mathematics No. 194, New York: Springer-Verlag · Zbl 0223.53034
[4] Gaffney, M.: Asymptotic distributions associated with the Laplacian for forms. Comm. Pure and Appl. Math.XI, 535-545 (1958) · Zbl 0102.09604 · doi:10.1002/cpa.3160110405
[5] Kubota, T.: Elementary theory of Eisenstein series. New York: Halsted Press 1973 · Zbl 0268.10012
[6] Kudla, S., Millson, J.: Geodesic cycles and the Weil representation I, quotients of hyperbolic spare and Siegel modular forms. In press (1979) · Zbl 0495.10016
[7] Kudla, S., Millson, J.: Geodesic cycles and the Weil representation II, quotients of complex hyperbolic space and hermitian modular forms, in press (1979) · Zbl 0495.10016
[8] Petersson, H.: Ein Summationsverfahren für die Poincaréschen Reihe von der Dimension?2 zu den hyperbolischen Fixpunkte-Paaren. Math. Zeit.,49, 441-446 (1943-44) · Zbl 0028.35603 · doi:10.1007/BF01174212
[9] Shimura, G.: On modular forms of half integral weight. Ann. of Math.97 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[10] Fay, J.: Fourier coefficients of the resolvent for a Fuchsian group. Journal für die reine und angewandte Mathematik,293-294, 144-203 (1977) · Zbl 0352.30012
[11] Hecke, E.: Darstellung von Klassenzahlen als Perioden von Integralen 3. Gattung aus dem Gebiet der elliptischen Modulfunktionen. Collected works. No. 21 · JFM 52.0378.01
[12] Selberg, A.: On the Estimation of Fourier Coefficients of Modular Forms. Proc. Symposia in Pure Mathematics, No. 10, pp. 1-15 · Zbl 0018.39903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.