Noguchi, Junjiro Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties. (English) Zbl 0429.32003 Nagoya Math. J. 83, 213-233 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 28 Documents MSC: 32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables 32D15 Continuation of analytic objects in several complex variables 32J25 Transcendental methods of algebraic geometry (complex-analytic aspects) 32H30 Value distribution theory in higher dimensions Keywords:lemma on logarithmic derivatives; holomorphic curve; quasi-Abelian variety; surface of general type; extension theorem for holomorphic curves × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.2307/2373660 · Zbl 0301.32022 · doi:10.2307/2373660 [2] Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math 2 (1970) [3] DOI: 10.2969/jmsj/02520235 · Zbl 0253.32012 · doi:10.2969/jmsj/02520235 [4] DOI: 10.2748/tmj/1178241480 · Zbl 0244.32011 · doi:10.2748/tmj/1178241480 [5] J. Math. Pures Appl 5 pp 19– (1926) [6] Ann. Sci. École Norm. Sup 43 pp 309– (1926) · JFM 52.0326.01 · doi:10.24033/asens.772 [7] Introduction à l’Etude des Variétés kählériennes (1958) [8] DOI: 10.1215/S0012-7094-77-04404-0 · Zbl 0361.32003 · doi:10.1215/S0012-7094-77-04404-0 [9] DOI: 10.1007/BF01390205 · Zbl 0374.32006 · doi:10.1007/BF01390205 [11] Hiroshima Math. J 10 pp 229– (1980) [12] DOI: 10.1007/BF01389820 · Zbl 0569.32012 · doi:10.1007/BF01389820 [13] DOI: 10.1090/S0002-9947-1972-0308433-6 · doi:10.1090/S0002-9947-1972-0308433-6 [14] DOI: 10.1017/CBO9780511569197.014 · doi:10.1017/CBO9780511569197.014 [15] DOI: 10.1007/BF01111588 · Zbl 0135.12503 · doi:10.1007/BF01111588 [16] J. Fac. Sci. Univ. Tokyo Sect. IA 23 pp 525– (1976) [17] DOI: 10.2969/jmsj/02620272 · Zbl 0276.32013 · doi:10.2969/jmsj/02620272 [18] Hiroshima Math. J 7 pp 833– (1977) [19] Hiroshima Math. J 6 pp 281– (1976) [20] Le Théorème de Picard-Borei et la théorie des fonctions méromorphes (1939) [21] DOI: 10.1007/BF02565342 · JFM 52.0323.03 · doi:10.1007/BF02565342 [22] DOI: 10.1090/S0002-9904-1976-14018-9 · Zbl 0346.32031 · doi:10.1090/S0002-9904-1976-14018-9 [23] Proc. Amer. Math. Soc 66 pp 103– (1977) [24] DOI: 10.1007/BF02392265 · Zbl 0258.32009 · doi:10.1007/BF02392265 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.