×

zbMATH — the first resource for mathematics

Besov spaces and Sobolev spaces on a nilpotent Lie group. (English) Zbl 0429.43004

MSC:
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
22E25 Nilpotent and solvable Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. BERGH AND J. LOFSTROM, Interpolation Spaces, Springer-Verlag, 1976. · Zbl 0344.46071
[2] A. P. CALDERON, Intermediate spaces and interpolation, the complex method, Studi Math. 24 (1964), 113-190. · Zbl 0204.13703
[3] T. M. FLETT, On the rate of growth of mean values of holomorphic and harmoni functions, Proc. London Math. Soc. (3) 20 (1970), 749-768. · Zbl 0211.39203
[4] T. M. FLETT, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math Soc.(3) 22 (1971), 385-451. · Zbl 0234.35032
[5] G. B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark Mat.13 (1975), 161-208. · Zbl 0312.35026
[6] P. GRISVARD, Commutativite de deux functeurs d’interpolation et applications I, II, J. Math. Pures Appl. 45 (1966), 143-206, 207-290. · Zbl 0187.05803
[7] G. A. HUNT, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 8 (1956), 264-293. JSTOR: · Zbl 0073.12402
[8] R. JOHNSON, Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc London Math. Soc. (3) 27 (1973), 290-316. · Zbl 0262.46037
[9] A. W. KNAPP AND E. M. STEIN, Intertwining operators for semisimple groups, Ann of Math. (2) 93 (1971), 489-578. JSTOR: · Zbl 0257.22015
[10] H. KOMATSU, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346 · Zbl 0154.16104
[11] H. KOMATSU, Fractional powers of operators II: Interpolation spaces, Pacific J. Math 21 (1967), 81-111. · Zbl 0168.10702
[12] H. KOMATSU, Fractional powers of operators III:Negative powers, J. Math. Soc Japan 21 (1969), 205-220. · Zbl 0181.41003
[13] H. KOMATSU, Fractional powers of operators IV:Potential operators, J. Math. Soc Japan 21 (1969), 221-228. · Zbl 0181.41003
[14] H. KOMATSU, Fractional powers of operators V:Dual operators, J. Fac. Sci. Univ Tokyo Sect. IA Math. 17 (1970), 373-396. · Zbl 0208.16302
[15] H. KOMATSU, Fractional powers of operators VI:Interpolation of nonnegative opera tors and imbedding theorems, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 19 (1972), 1-62. · Zbl 0249.47013
[16] A. W. KORANYI AND S. VAGI, Singular integrals in homogeneous spaces and some prob lems of classical analysis, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 25 (1971), 575-648. · Zbl 0291.43014
[17] T. MURAMATSU, On imbedding theorems for Besov spaces of functions defined i general regions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 7 (1971/1972), 261-285. · Zbl 0236.46034
[18] T. MURAMATSU, On Besov spaces and Sobolev spaces of generalized functions define on a general region, Publ. Res. Inst. Math. Sci. Kyoto Univ. 9 (1974), 325-396. · Zbl 0287.46046
[19] K. SAKA, The representation theorem and the Hp space theory associated with semi groups on Lie groups, Thoku Math. J. 30 (1978), 131-151. · Zbl 0378.46024
[20] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeto University Press, Princeton, 1970. · Zbl 0207.13501
[21] E. M. STEIN, Topics in Harmonic Analysis, Ann. of Math. Studies No. 63, Princeto University Press, Princeton, 1970. · Zbl 0193.10502
[22] M. H. TAIBLESON, On the theory of Lipschitz spaces of distributions on Euclidea ti-space I: Principal properties, J. Math. Mech. (3) 13 (1964), 407-479. · Zbl 0132.09402
[23] M. H. TAIBLESON, On the theory of Lipschitz spaces of distributions on Euclidea w-space II:Translation invariant operators, duality, and interpolation, J. Math. Mech. (5) 14 (1965), 821-839. · Zbl 0132.09402
[24] A. YOSHIKAWA, Fractional powers of operators, J. Fac. Sci. Univ. Tokyo Sect. I Math. (1971), 335-362. · Zbl 0238.46040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.