zbMATH — the first resource for mathematics

Locally best tests for Gaussian processes. (English) Zbl 0429.62059

62L10 Sequential statistical analysis
60G15 Gaussian processes
62M02 Markov processes: hypothesis testing
62L15 Optimal stopping in statistics
60G40 Stopping times; optimal stopping problems; gambling theory
Full Text: DOI EuDML
[1] Abraham, J.K.: The local power of sequential tests subject to an expected sample size restriction. Unpublished Stanford technical report 1969.
[2] Berk, R.H.: Locally most powerful tests. Ann. Stat.3, 1975, 373–381. · Zbl 0332.62063 · doi:10.1214/aos/1176343063
[3] Bhattacharya, P.K., andR.P. Smith: Sequential probability ratio test for the mean value function of a Gaussian process. Ann. Math. Stat.43, 1972, 1861–1873. · Zbl 0263.62048 · doi:10.1214/aoms/1177690857
[4] Darling, D.A., andA.J. Siegert: The first passage problem for a continuous Markov process. Ann. Math. Stat.24, 1953, 624–639. · Zbl 0053.27301 · doi:10.1214/aoms/1177728918
[5] Freedman, D.: Brownian Motion and Diffusion. San Francisco 1971. · Zbl 0231.60072
[6] Gihman, I.I., andA.V. Skorohod: Stochastic Differential Equations. Berlin 1972. · Zbl 0242.60003
[7] Meschkowski, H.: Hilbertsche Räume mit Kernfunktionen. Berlin 1962. · Zbl 0103.08802
[8] Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York 1967. · Zbl 0153.19101
[9] Parzen, E.: Statistical analysis on time series by Hilbert space methodsI, 1959. Time Series Analysis Papers, by E. Parzen. San Francisco 1967.
[10] Sirjaev, A.N.: Statistical Sequential Analysis. Amer. Math. Society, Providence, Rhode Island 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.