×

zbMATH — the first resource for mathematics

Stable vector bundles on projective spaces in \(\text{char}p>0\). (English) Zbl 0431.14003

MSC:
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14G15 Finite ground fields in algebraic geometry
14G20 Local ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Barth, W.: Some properties of stable rank 2 bundles onP n. Math. Ann.226, 125-130 (1977) · Zbl 0417.32013 · doi:10.1007/BF01360864
[2] Barth, W., Hulek, K.: Monads and moduli of vector bundles. Manuscripta math.25, 323-347 (1978) · Zbl 0395.14007 · doi:10.1007/BF01168047
[3] Elencwajg, G., Forster, O.: Bounding cohomology groups of vector bundles onP n . Math. Ann.246, 251-270 (1980) · Zbl 0432.14011 · doi:10.1007/BF01371047
[4] Elencwajg, G., Hirschowitz, A., Schneider, M.: Les fibres uniformes de rang au plusn surP n (C) sont ceux qu’on croit (to appear) · Zbl 0456.32009
[5] Ellingsrud, G., Strømme, S.: On the moduli space for stable rank 2 bundles onP 2 with odd chern class (preprint) · Zbl 0632.14013
[6] Forster, O., Hirschowitz, A., Schneider, M.: Type de scindage generalise pour fibres stables (to appear) · Zbl 0441.14007
[7] Hartshorne, R.: Algebraic geometry. Graduate text in math. Vol. 52. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0367.14001
[8] Hartshorne, R.: Ample subvarieties of algebraic varieties. In: Lecture Notes in Mathematics, Vol. 156. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0208.48901
[9] Hartshorne, R.: Stable vector, bundles of rank 2 onP 3 Math. Ann.238, 229-280 (1978) · Zbl 0411.14002 · doi:10.1007/BF01420250
[10] Hartshorne, R.: Stable reflexive sheaves Math Ann 254, 121-176 (1980) · Zbl 0437.14008 · doi:10.1007/BF01467074
[11] Hulek, K.: On the classification of stable rankr bundles over projective plane (to appear) · Zbl 0446.14006
[12] Katz, N.: Milpotent connections and monodromy theorem. Publ. Math. I.H.E.S. 39 (1970)
[13] Lange, H.: The stability of a rank 2 vector bundles onP 2. Preprint 91. Dept. Math. Univ. Fed. Perambuco Recife, Brasil 49 P.P. (1978)
[14] Lange, H.: On stable and uniform rank 2 vector bundles in characteristicp. Preprint 92. Dept. Math. Univ. Fed. Perambuco, Recife, Brasil (1978) · Zbl 0439.14001
[15] Manin, Ju.I.: Lectures onk-functors in algebraic geometry. Russian Math. Survey24, 1-89
[16] Maruyama, M.: On a family of algebraic vector bundles. Volume in Honour of Y. Akizuki. Tokyo (1978) · Zbl 0412.14004
[17] Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J.58, 25-68 (1975) · Zbl 0337.14026
[18] Maruyama, M.: Boundedness of semistable sheaves of small ranks. Nagoya Math. J.78, 65-94 (1980) · Zbl 0456.14011
[19] Sato, E.: Uniform vector bundles on a projective space. J Math. Soc. Japan28, 123-132 (1976) · Zbl 0315.14003 · doi:10.2969/jmsj/02810123
[20] Spindler, H.: Der Satz von Grauert-Mülich für beliebige semistable holomorphe Vektorbündel über demn-dimensionalen komplex-projektiven Raum. Math. Ann.243, 131-141 (1979) · Zbl 0435.32018 · doi:10.1007/BF01420420
[21] Van de Ven, A.: On uniform vector bundles. Math. Ann.195, 245-248 (1972) · Zbl 0215.43202
[22] Wever, P.: The moduli of a class of rank two vector bundles onP 3. Ph. D. Thesis, Berkeley (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.