Hartshorne, Robin Stable reflexive sheaves. (English) Zbl 0431.14004 Math. Ann. 254, 121-176 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 ReviewsCited in 232 Documents MathOverflow Questions: Dual of torsion-free/reflexive coherent sheaf Pull-back of a reflexive sheaf under a flat morphism MSC: 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010) 32L20 Vanishing theorems 14D22 Fine and coarse moduli spaces 57R20 Characteristic classes and numbers in differential topology Keywords:stable rank 2 reflexive sheaves; Chern class; correspondence to generically local complete intersection Cohen-Macaulay curves; spectrum of reflexive sheaf; stratification of moduli space; vanishing theorems Citations:Zbl 0374.14002; Zbl 0411.14002; Zbl 0381.55005 PDF BibTeX XML Cite \textit{R. Hartshorne}, Math. Ann. 254, 121--176 (1980; Zbl 0431.14004) Full Text: DOI EuDML OpenURL References: [1] Barth, W.: Some properties of stable rank-2 vector bundles of ?n. Math. Ann.226, 125-150 (1977) · Zbl 0417.32013 [2] Barth, W., Hulek, K.: Monads and moduli of vector bundles, manuscripta math.25, 323-347 (1978) · Zbl 0395.14007 [3] Barth, W., Elencwajg, G.: Concernant la cohomologie des fibrés algébriques stables sur ?n(?). In: Variétés analytiques compactes (Nice 1977). In:Lecture Notes in Mathematics, Vol. 683, pp. 1-24. Berlin, Heidelberg, New York: Springer 1978 [4] Brun, J.: Les fibrés de rang deux sur ?2 et leur sections (preprint) [5] Ein, L.: Stable vector bundles on projective spaces in char.p>0. Math. Ann.254, 53-72 (1980) · Zbl 0437.14007 [6] Ellingsrud, G., Strømme, S.A.: Stable rank-2 vector bundles on ?3 withc 1=0 andc 2=3 (preprint) · Zbl 0438.14009 [7] Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics,Vol. 41. Berlin, Heidelberg, New York: Springer 1967 · Zbl 0185.49202 [8] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0367.14001 [9] Hartshorne, R.: Stable vector bundles of rank 2 on 176-1. Math. Ann.238, 229-280 (1978) · Zbl 0411.14002 [10] Hartshorne, R.: Algebraic vector bundles on projectives spaces: a problem list. Topology18, 117-128 (1979) · Zbl 0417.14011 [11] Hartshorne, R.: On the classification of algebraic space curves. In: Vector bundles and differential equations, Nice (1979), ed. A. Hirschowitz, pp. 83-112. Basel, Boston, Stuttgart: Birkhäuser 1980 [12] Maruyama, M.: Moduli of stable sheaves. I. J. Math. Kyoto Univ.17, 91-126 (1977) · Zbl 0374.14002 [13] Maruyama, M.: Moduli of stable sheaves. II. J. Math.Kyoto Univ.18, 557-614 (1978) · Zbl 0395.14006 [14] Matsumura, H.: Commutative algebra. New York: Benjamin 1970 · Zbl 0211.06501 [15] Mori, S.: Projective manifolds with ample tangent bundles (preprint) · Zbl 0423.14006 [16] Mumford, D.: Lectures on curves on an algebraic surface. In: Annals of Math. Studies, Vol. 59. Princeton: Princeton University Press 1966 · Zbl 0187.42701 [17] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Basel Boston, Stuttgart: Birkhäuser1980 · Zbl 0438.32016 [18] Takemoto, F.: Stable vector bundles on algebraic surfaces. Nagoya Math. J.47, 29-48 (1972) · Zbl 0245.14007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.