×

zbMATH — the first resource for mathematics

Amenable subgroups of semi-simple groups and proximal flows. (English) Zbl 0431.22014

MSC:
22E46 Semisimple Lie groups and their representations
22E15 General properties and structure of real Lie groups
22D40 Ergodic theory on groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Arveson,An Invitation to C*-algebras, Springer Verlag, New York, 1976. · Zbl 0344.46123
[2] A. Borel,Groupes linéaires algébriques, Ann. of Math.64 (1956), 20–80. · Zbl 0070.26104
[3] A. Borel and J. Tits,Groupes réductifs, Publ. Math. I.H.E.S.27 (1965), 55–151. · Zbl 0145.17402
[4] A. Borel and J. Tits,Éléments unipotents et sous-groupes paraboliques de groupes réductifs I, Invent. Math.12 (1971), 95–104. · Zbl 0238.20055
[5] H. Furstenberg,A Poisson formula for semi-simple Lie groups, Ann. of Math.77 (1963), 335–383. · Zbl 0192.12704
[6] S. Glasner,Proximal Flows, Springer Lecture Notes in Mathematics, No. 517, 1976. · Zbl 0322.54017
[7] J. Humphreys,Linear Algebraic Groups, Springer Verlag, New York, 1975. · Zbl 0325.20039
[8] G. W. Mackey,Borel structures in groups and their duals, Trans. Amer. Math. Soc.85 (1957), 134–165. · Zbl 0082.11201
[9] C. C. Moore,Compactifications of symmetric spaces I, Amer. J. Math.86 (1964), 201–218. · Zbl 0156.03202
[10] C. C. Moore,Flows on homogeneous spaces, Amer. J. Math.88 (1966), 154–178. · Zbl 0148.37902
[11] L. Pukanszky,Unitary representations of exponential solvable Lie groups, J. Functional Analysis2 (1968), 73–113. · Zbl 0172.18502
[12] I. Satake,On representations and compactifications of symmetric spaces, Ann. of Math.71 (1960), 77–110. · Zbl 0094.34603
[13] J. Tits,Free subgroups in linear groups, J. Algebra20 (1972), 250–270. · Zbl 0236.20032
[14] R. J. Zimmer,Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, to appear. · Zbl 0391.28011
[15] R. J. Zimmer,Induced and amenable ergodic actions of Lie groups, preprint. · Zbl 0401.22009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.