Vector fields defined by complex functions. (English) Zbl 0431.34034


37-XX Dynamical systems and ergodic theory
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
30G20 Generalizations of Bers and Vekua type (pseudoanalytic, \(p\)-analytic, etc.)
34M99 Ordinary differential equations in the complex domain
Full Text: DOI


[1] Andronov, A.A; Leontovich, E.A; Gordon, I.I; Maier, A.G, Qualitative theory of second-order dynamical systems, (1973), Wiley New York · Zbl 0282.34022
[2] Andronov, A.A; Pontryagin, L.S, Systèmes grossiers, Dokl. akad. nauk SSSR, 14, 247-251, (1937) · Zbl 0016.11301
[3] Brickman, L; Thomas, E.S, Conformal equivalence of analytic flows, J. differential equations, 25, 310-324, (1977) · Zbl 0348.34034
[4] Coleman, C, Equivalence of planar dynamical and differential systems, J. differential equations, 1, 222-233, (1965) · Zbl 0135.30704
[5] Courant, R; Hilbert, D, ()
[6] Forster, H, Über das verhalten der integralkurven einer gewöhnlichen differential-gleichung erster ordnung in der umgebung eines singulären punktes, Math. Z., 43, 271-320, (1938) · JFM 63.0413.01
[7] Hukuhara, M; Kimura, T; Matuda, K, Equations differentielles ordinaires du premier ordre dans le champ complexe, (1961), Mathematical Society of Japan Tokyo · Zbl 0101.30002
[8] Kaplan, W, Analytic first integrals of ordinary differential equations, Comment. math. helv., 47, 205-212, (1972) · Zbl 0247.34008
[9] Kaplan, W, Analytic ordinary differential equations in the large, (), 131-151
[10] Kaplan, W, On partial differential equations of first order, (), 221-231
[11] Nemitskii, V.V; Stepanov, V.V, Qualitative theory of ordinary differential equations, (1960), Princeton Univ. Press Princeton, N. J
[12] Schaeffer, A.C; Spencer, D.C, Coefficient regions for schlicht functions, () · Zbl 0049.06003
[13] Sverdlove, R, Inverse problems for dynamical systems in the plane, (), 499-502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.