zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Collocation and residual correction. (English) Zbl 0431.65056

65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
Full Text: DOI EuDML
[1] Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal.10, 582-605 (1973) · Zbl 0232.65065 · doi:10.1137/0710052
[2] Frank, R., Ueberhuber, C.W.: Collocation and iterated defect correction. Lectures Notes in Mathematics Vol. 631. Berlin Heidelberg New York: Springer 1976 · Zbl 0392.65032
[3] Oliveira, F.A.: Numerical solution of two-point-boundary value problems and spline functions. Presented at the Conference on Numerical Analysis. Colloquia Mathematica Societatis Janos Bolyai 22. Numerical Methods, Keszthely, Hungary, 471-490, 1977
[4] Prenter, P.M.: Splines and variational methods, New York: Wiley 1975 · Zbl 0344.65044
[5] Russell, R.D., Shampine, L.F.: A collocation method for boundary value problems. Numer. Math.19, 1-28 (1972) · Zbl 0221.65129 · doi:10.1007/BF01395926
[6] Weiss, R.: The application of implicit Runge-Kutta and collocation methods to boundary value problems. Math. Comput.28, 449-464 (1974) · Zbl 0284.65067