×

The category of Banach spaces in sheaves. (English) Zbl 0432.18005


MSC:

18B25 Topoi
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] 1 N. Auspitz , Q-Sheaves of Banach spaces, Dissertation , Univ. of Waterloo , 1975 .
[2] 2 B. Banaschewski , Sheaves of Banach spaces , Quaest. Math. 1 ( 1977 ), 1 - 22 . MR 491892 | Zbl 0435.46051 · Zbl 0435.46051
[3] 3 C. Burden , The Hahn-Banach Theorem in a category of sheaves , J. Pure and Applied Algebra , to appear. MR 560783 | Zbl 0438.46051 · Zbl 0438.46051
[4] 4 C. Burden , Normed and Banach spaces in categories of sheaves , Dissertation Un iv. of Sussex 1978 .
[5] 5 K.H. Hofmann , Bundles o f Banach spaces, Sheaves of Banach spaces, C(B)-modules , Lectures at the TH Darmstadt, 1974 .
[6] 6 K.H. Hofmann , Sheaves and bundles o f Banach spaces , Preprint, 1976 .
[7] 7 P.T. Johnstone , Topos Theory , Academic Press , 1977 . MR 470019 | Zbl 0368.18001 · Zbl 0368.18001
[8] 8 P.T. Johnstone , Conditions related to De Morgan’s law , Preprint, 1977 .
[9] 9 F.E.J. Linton , On a pullback Lemma for Banach spaces and the functorial semantics of double dualization , Preprint with addendum, 1970 .
[10] 10 C.J. Mulvey , Intuitionistic Algebra and representation of rings , Memoirs A. M. S. 14 8 ( 1974 ). Zbl 0274.18012 · Zbl 0274.18012
[11] 11 C.J. Mulvey , Banach sheaves , J. Pure and Applied Algebra , to appear. MR 560785 | Zbl 0475.18007 · Zbl 0475.18007
[12] 12 R. Pare & D. Schumacher , Abstract families and the adjoint functor Theorems , Lecture Notes in Math. 661 , Springer ( 1978 ). MR 514193 | Zbl 0389.18002 · Zbl 0389.18002
[13] 13 J. Wick Pelletier , Examples of localizations , Comm. in Alg. 3 ( 1975 ), 81 - 93 . MR 376803 | Zbl 0307.18004 · Zbl 0307.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.