×

A local compactness theorem for Maxwell’s equations. (English) Zbl 0432.35032


MSC:

35G15 Boundary value problems for linear higher-order PDEs
78A25 Electromagnetic theory (general)
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] Agmon, Lectures on Elliptic Boundary Value Problems (1965)
[2] Ikebe, Eigenfunction Expansions Associated with the Schrödinger Operator and their Application to Scattering Theory, Arch. Rat. Mech. An. 5 pp 1– (1960) · Zbl 0145.36902 · doi:10.1007/BF00252896
[3] Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen, inhomogenen Medien, Math. Z. 106 pp 213– (1968) · doi:10.1007/BF01110135
[4] Leis, Zur Theorie der zeitunabhängigen Maxwellschen Gleichungen, Gesellsch. f. Mathematik u. Datenverarb. Bonn Nr. 50 (1971) · Zbl 0227.35077
[5] Müller, Grundprobleme der mathematischen Theorie elektromagnetischer Schwingungen (1957) · Zbl 0087.21305 · doi:10.1007/978-3-642-94696-7
[6] Picard, Zur Existenz des Wellenoperators bei Anfangsrandwertproblemen vom Maxwell-Typ, Preprint no. 121 (1977) · Zbl 0346.35087
[7] Shenk, Eigenfunction Expansions and Scattering Theory for the Wave Equation in a Exterior Region, Arch. Rat. Mech. An. 21 pp 120– (1966) · Zbl 0135.15602 · doi:10.1007/BF00266571
[8] Triebel, Höhere Analysis (1972) · Zbl 0257.47001
[9] Werner, On the exterior boundary value problem of perfect reflection for stationary electromagnetic wave fields, J. Math. Anal. Appl. 7 pp 348– (1963) · Zbl 0118.43501 · doi:10.1016/0022-247X(63)90059-3
[10] Werner, Randwertprobleme für die zeitunabhängigen Maxwellschen Gleichungen mit variablen Koeffizienten, Arch. Rat. Mech. An. 18 (3) pp 167– (1965) · Zbl 0142.37501 · doi:10.1007/BF00285431
[11] Wilcox, Scattering Theory for the d’Alembert Equation in Exterior Domains (1975) · Zbl 0299.35002 · doi:10.1007/BFb0070581
[12] Weber , C. Hilbertraummethoden zur Untersuchung der Beugung elektromagnetischer Wellen an Dielektrika 1977
[13] Weck, Maxwell’s boundary value problem on Riemannian manifolds with smooth boundaries, J, Math. Anal. Appl. 46 pp 410– (1974) · Zbl 0281.35022 · doi:10.1016/0022-247X(74)90250-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.