×

On nearly Euclidean decomposition for some classes of Banach spaces. (English) Zbl 0432.46018


MSC:

46B20 Geometry and structure of normed linear spaces
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] T. Figiel : On the moduli of convexity and smoothness . Studia Math. 56 (1976) 121-155. · Zbl 0344.46052
[2] T. Figiel , J. Lindenstrauss and V.D. Milman : On dimension of almost spherical sections of convex bodies . Acta Math. 139 (1977) 53-94. · Zbl 0375.52002
[3] I.C. Gohberg and M.G. Krein : Introduction to the theory of linear nonselfadjoint operators , Moskwa 1965 (in Russian). American translation AMS Translations, Vol. 18. · Zbl 0181.13504
[4] R.I. Jamison and W.H. Ruckel : Factoring absolutely convergent series . Math. Ann. 224 (1976) 143-148. · Zbl 0319.40007
[5] F. John : Extremum problems with inequalities as subsidiary conditions, Courant Anniversary volume , Interscience, New York 1948, pp. 187-204. · Zbl 0034.10503
[6] W.B. Johnson , B. Maurey , G. Schechrman and L. Tzafriri (in preparation).
[7] B.S. Kashin : The order of diameters of some classes of smooth functions . Uspiehi Mat. Nauk 32 (1977) 191-192 (in Russian).
[8] J. Lindenstrauss and L. Tzafriri : Classical Banach spaces , Lecture Notes in Math. Berlin- Heidelberg-New York, Springer 1973. · Zbl 0259.46011
[9] B. Maurey : Un théorème de prolongement , C.R. Acad. Sci. Paris, Sér A-B, 279 (1974) 329-332. · Zbl 0291.47001
[10] B. Maurey and G. Pisier : Series de variable aléatoires vectori rielles independantes et propriétés geometriques des espaces de Banach , Studia Math. 58 (1976) 45-90. · Zbl 0344.47014
[11] S.J. Szarek : On Kashin’s almost Euclidean orthogonal decomposition of lnl (to appear in Bull. Acad. Sci. Polon). · Zbl 0395.46015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.