×

Factors and extensions of full shifts. (English) Zbl 0432.54036


MSC:

54H20 Topological dynamics (MSC2010)
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
28D20 Entropy and other invariants
54C70 Entropy in general topology

References:

[1] Adler, R., W. Goodwyn, andB. Weiss: Equivalence of topological Markov shifts. Israel J. Math.27, 49-63 (1977). · Zbl 0362.54034 · doi:10.1007/BF02761605
[2] Bowen, R., andO. Lanford: Zeta functions of restrictions of the shift transformation. Proc. Symp. Pure Math. vol. 14, p. 43-50. Providence, R. I.: Amer. Math. Soc. 1970.
[3] Coven, E., andM. Paul: Endomorphisms of irreducible shifts of finite type. Math. Syst. Th.8, 167-175 (1974). · Zbl 0309.54032 · doi:10.1007/BF01762187
[4] Gantmacher, F.: Theory of Matricies, vol. 2. New York: Chelsea. 1959. · Zbl 0085.01001
[5] Hedlund, G. A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Th.3, 320-375 (1959). · Zbl 0182.56901 · doi:10.1007/BF01691062
[6] Parry, W.: Intrinsic Markov chains. Trans. Amer. Math. Soc.112, 55-66 (1964). · Zbl 0127.35301 · doi:10.1090/S0002-9947-1964-0161372-1
[7] Parry, W., andR. F. Williams: Block Coding and a Zeta Function for Finite Markov Chains. Preprint. · Zbl 0383.94011
[8] Williams, R. F.: Classification of shifts, of finite type. Ann. Math.98, 120-153 (1973); Errata. Ann. Math.99, 380-381 (1974). · Zbl 0282.58008 · doi:10.2307/1970908
[9] Walters, P.: Ergodic Theory-Introductory Lectures. Lecture Notes Math. 458. Berlin-Heidelberg-New York: Springer. 1975. · Zbl 0299.28012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.