The average height of r-tuply rooted planted plane trees. (English) Zbl 0433.05024


05C05 Trees
60C05 Combinatorial probability
05-04 Software, source code, etc. for problems pertaining to combinatorics
Full Text: DOI


[1] Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. New York: Dover Publications 1970. · Zbl 0171.38503
[2] Apostol, T. M.: Introduction to analytic number theory. New York: Springer 1976. · Zbl 0335.10001
[3] De Bruijn, N. G., Knuth, D. E., Rice, S. O.: The average height of planted plane trees, in: Graph theory and computing (R. C. Read, ed.), pp. 15–22. New York-London: Academic Press 1972. · Zbl 0247.05106
[4] Flajolet, Ph., Raoult, J. C., Vuillemin, J.: On the average number of registers required for evaluating arithmetic expressions. IRIA Rapport de Recherche, No. 228 (1977). · Zbl 0407.68057
[5] Kemp, R.: The average number of registers needed to evaluate a binary tree optimally. Acta Informatica11, 363–372 (1979). · Zbl 0395.68059 · doi:10.1007/BF00289094
[6] Kemp, R.: On the average stack size of regularly distributed binary trees, in: Proc. of the sixth international colloquium on automata, languages and programming (ICALP 79), pp. 340–355. Berlin-Heidelberg-New York: Springer 1979. · Zbl 0415.05019
[7] Kemp, R.: The average depth of a prefix of the Dycklanguage D1, in: Proc. of the 2-th international conference of fundamentals of computing theory (FCT 79), pp. 230–236 (1979). · Zbl 0415.68044
[8] Knuth, D. E.: The art of computer programming, Vol. 1, 2nd ed., Reading, Mass.: Addison-Wesley 1973. · Zbl 0191.17903
[9] Kreweras, G.: Sur les éventails de segments. Cahiers du B.U.R.O.15, 1–41 (1970).
[10] Kuich, W., Prodinger, H., Urbanek, F. J.: On the height of derivation trees, in: Proc. of the 6th international colloquium on automata, languages and programming (ICALP 79), pp. 370–384. Berlin-Heidelberg-New York: Springer 1979. · Zbl 0409.68042
[11] Munro, I.: Random walks in binary trees. CS-Dept., University of Waterloo, 1976. · Zbl 0339.68040
[12] Prodinger, H.: The average maximal lead position of a Ballot sequence. Preprint, Technische Universität Wien, 1979.
[13] Riordan, J.: Combinatorial identities. New York: Wiley 1968. · Zbl 0194.00502
[14] Ruskey, F., Hu, T. C.: Generating binary trees lexicographically. Siam J. Comput.6, 745–758 (1977). · Zbl 0366.68027 · doi:10.1137/0206055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.