Milne, J. S. Étale cohomology. (English) Zbl 0433.14012 Princeton Mathematical Series. 33. Princeton, New Jersey: Princeton University Press. XIII, 323 p. $ 33.50 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 16 ReviewsCited in 1064 Documents MathOverflow Questions: Brauer group of \(\mathbb{Z}_{(p)}\) MSC: 14F20 Étale and other Grothendieck topologies and (co)homologies 14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry 14-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to algebraic geometry 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010) 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 14G99 Arithmetic problems in algebraic geometry; Diophantine geometry 14B25 Local structure of morphisms in algebraic geometry: étale, flat, etc. Keywords:comparison of classical and étale cohomology; Brauer group; constructible sheaves; cohomology of curves; Poincaré duality; proof of Weil conjecture; base change; purity; Lefschetz trace formula; cycle map; rationality of \(L\)-series Citations:Zbl 0287.14001; Zbl 0080.16201; Zbl 0128.26303; Zbl 0176.33601; Zbl 0199.55604; Zbl 0343.14005; Zbl 0255.14002; Zbl 0429.14016; Zbl 0406.14015; Zbl 0193.21503; Zbl 0198.25803; Zbl 0198.25901; Zbl 0277.14014; Zbl 0345.00010 PDFBibTeX XML