×

The algebraist’s upper half-plane. (English) Zbl 0433.14017


MSC:

14G15 Finite ground fields in algebraic geometry
14G20 Local ground fields in algebraic geometry
32P05 Non-Archimedean analysis
30G06 Non-Archimedean function theory
12J25 Non-Archimedean valued fields
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. G. Drinfel\(^{\prime}\)d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594 – 627, 656 (Russian).
[2] D. Goss, \pi -adic Eisenstein series for function fields, Compositio (to appear). · Zbl 0422.10020
[3] D. Goss, Modular forms for Fr[t], Crelle’s Journal. · Zbl 0422.10021
[4] David Goss, von Staudt for \?_{\?}[\?], Duke Math. J. 45 (1978), no. 4, 885 – 910. · Zbl 0404.12013
[5] Lothar Gerritzen and Hans Grauert, Die Azyklizität der affinoiden Überdeckungen, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 159 – 184 (German). · Zbl 0197.17303
[6] Reinhardt Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 191 – 214 (German). · Zbl 0202.20101
[7] Reinhardt Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256 – 273 (German). · Zbl 0202.20201
[8] Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. · Zbl 0193.34701
[9] Andrew Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0191.38101
[10] Alain Robert, Elliptic curves, Lecture Notes in Mathematics, Vol. 326, Springer-Verlag, Berlin-New York, 1973. Notes from postgraduate lectures given in Lausanne 1971/72.
[11] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. · Zbl 0256.12001
[12] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kanô Memorial Lectures, No. 1. · Zbl 0221.10029
[13] John Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257 – 289. · Zbl 0212.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.