zbMATH — the first resource for mathematics

Conformal transformations and Clifford algebras. (English) Zbl 0433.15014

15A66 Clifford algebras, spinors
53C27 Spin and Spin\({}^c\) geometry
53A30 Conformal differential geometry (MSC2010)
Full Text: DOI
[1] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3 – 38. · Zbl 0146.19001
[2] Claude C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York, 1954. · Zbl 0057.25901
[3] J. Haantjes, Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself, Nederl. Akad. Wetensch. Proc. 40 (1937), 700-705. · Zbl 0017.42201
[4] Max Karoubi, \?-theory, Springer-Verlag, Berlin-New York, 1978. An introduction; Grundlehren der Mathematischen Wissenschaften, Band 226. · Zbl 0382.55002
[5] H. A. Kastrup, Zur Physikalischen Deutung und darstellungsthoretischen Analyse der konformen Transformationen von Raum und Zeit, Ann. Physik (7) 9 (1961/1962), 388 – 428 (German). · Zbl 0111.41204
[6] -, Some experimental consequences of conformal invariance at extremely high energies, Phys. Letters 3 (1962), 78-80. · Zbl 0106.20503
[7] Ian R. Porteous, Topological geometry, Van Nostrand Reinhold Co., London-New York-Melbourne, 1969. · Zbl 0446.15001
[8] Irving Ezra Segal, Mathematical cosmology and extragalactic astronomy, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, Vol. 68.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.