Study of an implicit scheme for integrating Maxwell’s equations. (English) Zbl 0433.73067


74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
65D30 Numerical integration
Full Text: DOI


[1] Nielson, C.; Lindman, E., (Proceedings of the 6th Conference on Numerical Simulation of Plasmas (1973), Lawrence Berkeley Lab)
[2] Raviart, P. A.; Thomas, J. M., A mixed finite element for 2nd order elliptic problems, (Lecture Notes in Math., 606 (1977), Springer), 292-315 · Zbl 0362.65089
[3] Thomas, J. M., Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes, Thèse, 6 (1977), Paris
[4] Yosida, K., Functional analysis, ((1974), Springer: Springer Berlin), 231-250 · Zbl 0286.46002
[5] Ciarlet, P. G.; Raviart, P. A., General Lagrange and Hermite interpolation in |\(R^n\) with applications to finite element methods, Arch. Rat. Mech. Anal., 46, 177-199 (1972) · Zbl 0243.41004
[6] Aubin, J. P., Approximation of elliptic boundary value problems (1972), Wiley Interscience · Zbl 0248.65063
[7] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., ASCE, 85, 67-94 (1959)
[8] Richtmyer, R. D.; Morton, K. W., Difference methods for initial value problems, ((1967), Interscience), 68-80 · Zbl 0155.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.