×

zbMATH — the first resource for mathematics

Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems. (English) Zbl 0433.92014

MSC:
92Cxx Physiological, cellular and medical topics
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Betz, A., Chance, B.: Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys., 109, 579–594 (1965) · doi:10.1016/0003-9861(65)90403-0
[2] Boa, J. A.: A model biochemical reaction. Ph.D. Thesis, California Institute of Technology, Pasadena, 1974 · Zbl 0314.92005
[3] Boa, J. A., Cohen, D. S.: Bifurcation of localized disturbances in a model biochemical reaction. SIAM J. Appl. Math. 30, 123–135 (1976) · Zbl 0328.76065 · doi:10.1137/0130015
[4] Changeux, J. P., Thiery, J.: Regulatory Function of Biological Membranes (J. Järnefelt ed.) Vol. 11, Elsevier Publishing Co., 1968
[5] Gmitro, J. I., Scriven, L. E.: A physicochemical basis for pattern and rhythm, in: Intracellular transport (K. B. Warren, ed.) New York: Academic Press, 1966
[6] Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972) · doi:10.1016/S0006-3495(72)86164-2
[7] Hess, B.: Funkionelle und Morphologische Organisation der Zelle. Berlin, Springer Verlag, 1962
[8] Higgins, J.: A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Nat. Acad. Sci., U.S.A. 51, 989–994 (1964) · doi:10.1073/pnas.51.6.989
[9] Iooss, G.: Bifurcation et stabilité, Publications Mathématiques, N31, Université Paris Sud, Orsay, France, 1973
[10] Katchalsky, A., Oplatka, A.: Neurosciences Res. Symp. 1, 352–371 (1966)
[11] Katchalsky, A., Spangler, R.: Quarterly Rev. Biophys. 1, 127–175 (1968) · doi:10.1017/S0033583500000524
[12] Kauffman, S. A., Shymko, R. M., Trabert, K.: Control of sequential compartment formation in Drosophila. Science 199, 259–270 (1978) · Zbl 0428.92003 · doi:10.1126/science.413193
[13] Kogelman, S., Keller, J. B.: Transient behavior of unstable nonlinear systems with applications to the Bénard and Taylor problems. SIAM J. Appl. Math. 20, 619–637 (1971) · Zbl 0221.35009 · doi:10.1137/0120062
[14] Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Applied Math. Sciences, Vol. 19, New York-Heidelberg-Berlin: Springer Verlag, 1976 · Zbl 0346.58007
[15] Matkowsky, B. J.: A simple nonlinear dynamic stability problem. Bull. Amer. Math. Soc. 76, 620–625 (1970) · Zbl 0195.11102 · doi:10.1090/S0002-9904-1970-12461-2
[16] Meinhardt, H.: J. Cell Sci. 23, 117–139 (1977)
[17] Meurant, G., Saut, J. C.: Bifurcation and stability in a chemical system. J. Math. An. and Appl. 59, 69–91 (1977) · Zbl 0355.35009 · doi:10.1016/0022-247X(77)90093-2
[18] Naparstek, A., Romette, J. L., Kernevez, J. P., Thomas, D.: Memory in enzyme membranes. Nature 249, 490–491 (1974) · doi:10.1038/249490a0
[19] Naparstek, A., Thomas, D., Caplan, S. R.: Biochem. Biophys. Acta 323, 643–646 (1973) · doi:10.1016/0005-2736(73)90176-4
[20] Nicolis, G., Prigogine, I.: Self-organization in non equilibrium systems. Interscience, New York, 1977 · Zbl 0363.93005
[21] Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. Journal, July (1972) · Zbl 0223.35038
[22] Sel’kov, G. E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968) · doi:10.1111/j.1432-1033.1968.tb00175.x
[23] Thomas, D.: Artificial membranes: transport, memory, and oscillatory phenomena. In: Analysis and Control of Immobilized Enzyme Systems (Thomas and Kernevez eds.), pp. 115–150, North Holland, 1976
[24] Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (London) B237, 37–72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.