×

Estimates for exponential sums. (English) Zbl 0434.10026


MSC:

11L07 Estimates on exponential sums
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Jing Run Chen, On Professor Hua’s estimate of exponential sums, Sci. Sinica 20 (1977), no. 6, 711 – 719. · Zbl 0374.10024
[2] G. H. Hardy and J. E. Littlewood, Some problems of ”partitio numerorum”: II. Proof that every large number is the sum of at most 21 biquadrates, Math. Z. 9 (1921), no. 1-2, 14 – 27. · JFM 48.0142.01
[3] Loo-keng Hua, On an exponential sum, J. Chinese Math. Soc. 2 (1940), 301 – 312. · Zbl 0061.06608
[4] L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs, Vol. 13, American Mathematical Society, Providence, R.I., 1965. · Zbl 0192.39304
[5] Gyula Sándor, Uber die Anzahl der Lösungen einer Kongruenz, Acta Math. 87 (1952), 13 – 16 (German). · Zbl 0046.26605
[6] André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204 – 207. · Zbl 0032.26102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.