×

zbMATH — the first resource for mathematics

Values of abelian \(L\)-functions at negative integers over totally real fields. (English) Zbl 0434.12009
The authors develop the theory of \(p\)-adic Hilbert modular forms and apply this theory to the study of abelian \(L\)-values over totally real fields. The paper begins with a long, detailed introduction, which summarizes the history and contents of the paper and states the main theorems concerning modular forms and congruences among \(L\)-values. Concerning the latter, the reader is referred to recent papers of P. Cassou-Nogues [Invent. Math. 51, 29–59 (1979; Zbl 0408.12015)] and D. Barsky [Groupe Étude Anal. Ultramétrique, 5e Année 1977/78, Exp. No. 16, 23 p. (1978; Zbl 0406.12008)] for an alternate method based on formulas of T. Shintani [J. Fac. Sci., Univ. Tokyo, Sect. I A 23, 393–417 (1976; Zbl 0349.12007)]. (This method is the subject of a paper by N. Katz which is about to appear in [Math. Ann. 255, 33–43 (1981; Zbl 0497.14006)])
An article of the second author [Journées arithmétiques de Luminy, 1978, Astérisque 61, 177–192 (1979; Zbl 0408.12016)] compares the congruences obtained by the two different methods and explains how these congruences may be used to construct \(p\)-adic \(L\)-functions.
Reviewer: Kenneth A. Ribet

MSC:
11S40 Zeta functions and \(L\)-functions
11R42 Zeta functions and \(L\)-functions of number fields
11R80 Totally real fields
11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Barsky, D.: Fonctions zêtap-adiques d’une classe de rayon des corps totalement réels. Groupe d’étude d’analyse ultramétrique 1977-78; errata, 1978-79
[2] Cassou-Noguès, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêtap-adiques. Invent. Math.51, 29-59 (1979) · Zbl 0408.12015 · doi:10.1007/BF01389911
[3] Coates, J.:p-adicL-functions and Iwasawa’s theory. In: Algebraic Number Fields (A. Fröhlich, ed.). London-New York-San Francisco: Academic Press 1977 · Zbl 0393.12027
[4] Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Invent. Math.8, 238-243 (1969) · Zbl 0179.26201 · doi:10.1007/BF01406076
[5] Deligne, P.: Letters to J-P. Serre: October, 1972 and December, 1973
[6] Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. Lecture Notes in Math.349, 143-316 (1973) · Zbl 0281.14010 · doi:10.1007/978-3-540-37855-6_4
[7] Eichler, M.: On theta functions of real algebraic number fields. Acta Arith.33, 269-292 (1977) · Zbl 0348.10017
[8] Gelbart, S.: Weil’s representation and the spectrum of the metaplectic group. Lecture Notes in Math.530, 1976 · Zbl 0365.22017
[9] Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959
[10] Hirzebruch, F.: Hilbert modular surfaces. Enseignement Math.19, 183-281 (1973) · Zbl 0285.14007
[11] Hurwitz, A.: Mathematische Werke. Basel: Emil Birkhäuser 1932 · JFM 58.0047.02
[12] Igusa, J.: On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan20, 96-106 (1968) · Zbl 0164.21101 · doi:10.2969/jmsj/02010096
[13] Iwasawa, K.: Lectures onp-adicL-functions. Princeton: Princeton University Press 1972
[14] Jacquet, H., Langlands, R.P.: Automorphic forms onGL(2). Lectures Notes in Math114 (1970) · Zbl 0236.12010
[15] Katz, N.:p-adic properties of modular schemes and modular forms. Lecture Notes in Math.350, 70-190 (1973) · Zbl 0271.10033
[16] Katz, N.: The Eisenstein measure andp-adic interpolation. Amer. J. Math.99, 238-311 (1977) · Zbl 0375.12022 · doi:10.2307/2373821
[17] Katz, N.:p-adicL-functions via moduli of elliptic curves. Proc. Symp. Pure Math.29, 479-506 (1975)
[18] Katz, N.:p-adic interpolation of real analytic Eisenstein series. Ann. of Math.104, 459-571 (1976) · Zbl 0354.14007 · doi:10.2307/1970966
[19] Katz, N.:p-adicL-functions forCM fields. Invent. Math.49, 199-297 (1978) · Zbl 0417.12003 · doi:10.1007/BF01390187
[20] Koblitz, N.:p-adic numbers,p-adic analysis, and Zeta-Functions. New York-Heidelberg-Berlin: Springer-Verlag 1977 · Zbl 0364.12015
[21] Kubert, D., Lang, S.: Units in the modular function field. Lecture Notes in Math.601, 247-275 (1977) · Zbl 0361.10022 · doi:10.1007/BFb0063950
[22] Lang, S.: Algebraic Number Theory. Reading, Mass.: Addison-Wesley 1970 · Zbl 0211.38404
[23] Lang, S.: Introduction to Modular Forms. Berlin-Heidelberg-New York: Springer-Verlag 1976 · Zbl 0344.10011
[24] Lang, S.: Cyclotomic Fields. Berlin-Heidelberg-New York: Springer-Verlag 1978 · Zbl 0395.12005
[25] Mazur, B.: Analysep-adique. Unpublished manuscript, 1973
[26] Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil Curves. Invent. Math.25, 1-61 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[27] Queen, C.: The existence ofp-adicL-functions. Number Theory and Algebra, pp. 263-288. New York: Academic Press 1977
[28] Rapoport, M.: Compactifications de l’espace de modules de Hilbert-Blumenthal. Compositio Math.36, 255-335 (1978) · Zbl 0386.14006
[29] Ribet, K.:p-adic interpolation via Hilbert modular forms. Proc. Symp. Pure Math.29, 581-592 (1975) · Zbl 0306.14012
[30] Ribet, K.: Report onp-adicL-functions over totally real fields. Astérisque61, 177-192 (1979) · Zbl 0408.12016
[31] Sato, M., Shintani, T.: On zeta functions associated with prehomogeneous vector spaces. Ann. of Math.100, 131-170 (1974) · Zbl 0309.10014 · doi:10.2307/1970844
[32] Serre, J-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968
[33] Serre, J-P.: Formes modulaires et fonctions zêtap-adiques. Lecture Notes in Math.350, 191-268 (1973) · doi:10.1007/978-3-540-37802-0_4
[34] Serre, J-P.: Sur le résidu de la fonction zêtap-adique d’un corps de nombres. C.R. Acad. Sci. Paris287, Série A, 183-188 (1978)
[35] Shimizu, H.: Theta series and automorphic forms onGL 2. J. Math. Soc. Japan24, 638-683 (1972). (Correction: J. Math. Soc. Japan26, 374-376 (1974)) · Zbl 0241.10016 · doi:10.2969/jmsj/02440638
[36] Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J.58, 83-126 (1975) · Zbl 0316.10016
[37] Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA23, 393-417 (1976) · Zbl 0349.12007
[38] Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Gött. Nach.3, 15-56 (1970) · Zbl 0225.10031
[39] Tate, J.: Fourier analysis in number fields and Hecke’s zeta-functions. Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.) London-New York: Academic Press 1967
[40] Weil, A.: Fonction zêta et distributions. Séminaire Bourbaki 312, Juin, 1966 (=Collected Papers [1966])
[41] Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math.111, 143-211 (1964) (=Collected Papers [1964b]) · Zbl 0203.03305 · doi:10.1007/BF02391012
[42] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Fourth edition, reprinted. Cambridge: Cambridge University Press 1935
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.