Spectres et groupes cristallographiques. I: Domaines euclidiens. (Spectra and crystallographic groups. I: Euclidean domains). (French) Zbl 0434.35068


35P05 General topics in linear spectral theory for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI EuDML


[1] Bérard, P., Besson, G.: Spectres et Groupes Cristallographiques II: Domaines Sphériques, Ann. Institut Fourier à paraître (1980) · Zbl 0426.35073
[2] Bérard, P.: On the number of lattice points in some domains. Comm. in Partial Diff. Eq.3, 335-347 (1978) · Zbl 0391.10032 · doi:10.1080/03605307808820068
[3] Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, no 194. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0223.53034
[4] Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4 à 6. Act. Scient. et Industrielles 1337. Paris: Hermann 1968 · Zbl 0483.22001
[5] Duistermaat, J., Guillemin, V.: The spectrum of positive elliptic operators with periodic bicharacteristics. Inventiones Math.29, 39-79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[6] Friedman, A.: Partial Differential Equations. New York: Holt, Rinhardt and Winston Inc. 1969 · Zbl 0224.35002
[7] Gelfand, I.M., Shilov, G.: Generalized Functions I. New York: Academic Press 1964
[8] Hejahl, D.: The Selberg trace formula and the Riemann zeta function. Duke Math. J.43, 441-482 (1976) · Zbl 0346.10010 · doi:10.1215/S0012-7094-76-04338-6
[9] Keller, J., Rubinow, S.: Asymptotic solutions of eigenvalue problems. Annals of Physics,9, 24-75 (1960) · Zbl 0087.43002 · doi:10.1016/0003-4916(60)90061-0
[10] Melrose, R.: Weyl’s conjecture for manifolds with concave boundary. Proceedings of Symposia in Pure Math. no 36, Amer. Math. Soc. à paraître · Zbl 0436.58024
[11] McKean, H., Singer, I.M.: Curvature and the eigenvalues of the laplacian. Journal Differential Geom.1, 43-69 (1967) · Zbl 0198.44301
[12] Polya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Annals of Mathematical Studies no 27. Princeton: Princeton Univers. Press 1966
[13] Pinsky, M.: The Eigenvalues of an equilateral triangle, à paraître dans Siam Journal of Mathematical Analysis · Zbl 0462.35072
[14] Serre, J.P.: Cours d’arithmétique. Paris: Presses Universitaires de France 1970
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.