×

zbMATH — the first resource for mathematics

On a useful compactification for optimal control problems. (English) Zbl 0434.49007

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
91A99 Game theory
49J27 Existence theories for problems in abstract spaces
49L20 Dynamic programming in optimal control and differential games
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artstein, Z, On a variational problem, J. math. anal. appl., 45, 404-415, (1974) · Zbl 0287.49021
[2] Aumann, R.J; Perles, M, A variational problem arising in economics, J. math. anal. appl., 11, 488-503, (1965) · Zbl 0137.39201
[3] Berliocchi, H; Lasry, J.-M, Intégrandes normales et mesures paramétrées en calcul des variations, Bull. soc. math. France, 101, 129-184, (1973) · Zbl 0282.49041
[4] Yaari, M.E, On the existence of an optimal plan in continuous-time allocation processes, Econometrica, 32, 576-590, (1964) · Zbl 0204.18803
[5] Warga, J, Optimal control of differential and functional equations, (1972), Academic Press New York · Zbl 0253.49001
[6] Bourbaki, N, Éléments de mathématique, topologie générale, (1958), Hermann Paris, Livre III, Chap. 9 · Zbl 0085.37103
[7] Varaiya, P, N-person nonzero sum differential games with linear dynamics, SIAM J. control, 8, 441-449, (1970) · Zbl 0229.90063
[8] Dellacherie, C; Meyer, P.A, Probabilités et potentiel, (1975), Hermann Paris
[9] Hausdorff, F, Grundzüge der mengenlehre, (1949), Chelsea New York · Zbl 0041.02002
[10] Castaing, C; Valadier, M, Convex analysis and measurable multifunctions, () · Zbl 0346.46038
[11] Balder, E.J, An extension of duality-stability relations to nonconvex optimization problems, SIAM J. control and optimization, 15, 329-343, (1977) · Zbl 0366.90103
[12] Choquet, G, Lectures on analysis, (1969), Benjamin Reading, Mass
[13] Dubins, L.E, On extreme points of convex sets, J. math. anal. appl., 5, 237-244, (1962) · Zbl 0124.37704
[14] Brown, L.D, Closure theorems for sequential-design processes, () · Zbl 0415.62061
[15] Friedman, A, Differential games, (1971), Wiley New York · Zbl 0229.90060
[16] Hermes, H; LaSalle, J.P, Functional analysis and time optimal control, (1969), Academic Press New York · Zbl 0203.47504
[17] Edwards, R.E, Functional analysis, (1965), Holt, Rinehart & Winston New York · Zbl 0182.16101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.