×

Weak and strong solutions of stochastic differential equations. (English) Zbl 0434.60061


MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G48 Generalizations of martingales
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF00533992 · Zbl 0343.60038
[2] Doleans-Dade C., Lecture Notes in Math 581 pp 376– (1977)
[3] Galtchouk L., 2nd Vilnius Conf. Proba. Math., Stat 1 pp 88– (1977)
[4] Ito K., Mem. Amer. Math. Soc 4 (1951)
[5] DOI: 10.1090/pspum/031/0443074
[6] Jacod J., Lecture Notes in Math (1979)
[7] Jacod J., Existence and uniqueness for stochastic differential equations. In Stochastic Control Theory and Stochastic Differential Systems, Lecture Notes in Control and Information Sciences 16 (1979) · Zbl 0409.60066
[8] Jacod J., Integrales stochastiques par rapport a une semimartingale vectorielle, et changements de filtration · Zbl 0429.60054
[9] DOI: 10.2748/tmj/1178241233 · Zbl 0302.60036
[10] Metivier M., On a stopped Doob’s inequality and general stochastic equations (1978) · Zbl 0426.60059
[11] Metivier M., Stochastic integration (1979)
[12] Meyer P. A., Seminaire de Probabilites X, Lecture Notes Math 511 pp 245– (1976)
[13] DOI: 10.1214/aop/1176995849 · Zbl 0363.60044
[14] DOI: 10.1016/0047-259X(77)90039-2 · Zbl 0363.60045
[15] Skorokhod A. V., Studies in the Theory of Random Processes (1965) · Zbl 0146.37701
[16] DOI: 10.1007/BF01844872 · Zbl 0362.60069
[17] Yamada T., J. Math. Kyoto Univ 11 pp 156– (1971)
[18] Zvonkin A. K., School-Seminar ’Druskininkai’, Vilnius, Ac. Sci. Lit. SSR pp 9– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.