×

zbMATH — the first resource for mathematics

Cauchy problem for stochastic Liouville equation with randomly variable Hamiltonian of perturbations in the form of a bounded operator. (English) Zbl 0434.60071
MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. N. Bogolyubov and N. M. Krylov, Zapiski Kafedry Matematicheskoi Fiziki Akad. Nauk SSSR, KGU, Kiev (Notes from the Department of Mathematical Physics at the Kiev State University),4, 5 (1939).
[2] G. C. Papanicolaou, J. Math. Phys.,13, 1912 (1972). · Zbl 0253.60084 · doi:10.1063/1.1665932
[3] N. V. Laskii, S. V. Peletminskii, and V. I. Prikhod’ko, Teor. Mat. Fiz.,34, 244 (1978).
[4] Yu. N. Barabanenkov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,16, 1071, 1249 (1973).
[5] Yu. N. Barabanenkov, Teor. Mat. Fiz.,29, 244 (1976).
[6] N. N. Bogolyubov, ?Problems of a dynamical theory in statistical physics,? in: Studies in Statistical Mechanics, Vol. 1 (eds. J. de Boer and G. E. Uhlenbeck), North-Holland, Amsterdam (1962). · Zbl 0116.45101
[7] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, A. M. S. Colloquium Publications, Vol. 31, Providence R.I. (1957). · Zbl 0078.10004
[8] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, AMS, Providence R.I. (1969). · Zbl 0181.13504
[9] A. V. Skorokhod, Integration in Hilbert Spaces [in Russian], Nauka (1975). · Zbl 0355.62084
[10] D. Ruelle, Statistical Mechanics, New York (1969). (Russian translation published by Mir, 1971).
[11] Yu. N. Barabanenkov and M. I. Kalinin, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,20, 373 (1977).
[12] R. L. Stratonovich, Conditional Markov Processes and Their Application to the Theory of Optimal Control [in Russian], MGU (1966). · Zbl 0159.46804
[13] R. Z. Khas’minskii, Teor. Veroyatn. Ee Primen.,11, 444 (1966).
[14] G. C. Papanicolaou and S. R. S. Varadhan, Commun. Pure and Appl. Math.,26, 497 (1973). · Zbl 0262.60046 · doi:10.1002/cpa.3160260405
[15] Yu. N. Barabanenkov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,18, 253 (1975).
[16] Yu. L. Daletskii and M. G. Krein, Stability of the Solutions of Differential Equations in a Banach Space [in Russian], Nauka (1970).
[17] R. Kubo, J. Math. Phys.,4, 174 (1963). · Zbl 0135.45102 · doi:10.1063/1.1703941
[18] A. N. Filatov and L. V. Sharova, Integral Inequalities and the Theory of Nonlinear Oscillations [in Russian], Nauka (1976). · Zbl 0463.34001
[19] Yu. N. Barabanenkov and V. D. Ozrin, Teor. Mat. Fiz.,36, 240 (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.