zbMATH — the first resource for mathematics

On a sum of observables in a logic. (English) Zbl 0435.03040

03G12 Quantum logic
81P20 Stochastic mechanics (including stochastic electrodynamics)
06B99 Lattices
28A33 Spaces of measures, convergence of measures
Full Text: EuDML
[1] DRAVECKÝ J., ŠÍPOŠ J.: Nonadditivity of the Gudder mean value of observable quantities. Probasta\? 77, ÚMMT SAV Bratislava.
[2] GÖTZ A.: O odpowiednikach pojecia funkcji punktu w cialach Boole’a. Prace matematyczne, 1, 1955, 145-161.
[3] GUDDER S. P.: Spectral methods for a generalized probability theory. Transact. M.A.S., 119, 1965, 428-442. · Zbl 0161.46105
[4] GUDDER S. P.: Uniqueness and existence properties of bounded observables. Pac. J. Math., 19, 1966, 81-93. · Zbl 0149.23603
[5] GUDDER S. P.: Generalized measure theory. Found. of Phys., 3, 1973, 399-411.
[6] SIKORSKI R.: Boolean algebras. Springer 1960. · Zbl 0087.02503
[7] VARADARAJAN V. S.: Probability in physics and a theorem on simultaneous observability. Comm. Pure appl. Math., 15, 1962, 189-217. · Zbl 0109.44705
[8] VARADARAJAN V. S.: Geometry of quantum theory. New York 1968. · Zbl 0155.56802
[9] ZIERLER N.: Axioms for non-relativistic quantum mechanics. Pac. J. Math., 11, 1961, 1151-1169. · Zbl 0138.44503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.