×

zbMATH — the first resource for mathematics

A relationship between a Hankel matrix of Markov parameters and the associated matrix polynomial with some applications. (English) Zbl 0435.15011

MSC:
15A24 Matrix equations and identities
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] S. Barnett: A new formulation of the Li√©nard-Chipart stability criterion. Proc. Camb. Phil. Soc. (1971), 269-274. · Zbl 0224.15019
[2] S. Barnett: Matrices, polynomials and linear time-invariant systems. IEEE Trans. Automat. Control, AC-18 (1973), 1-10. · Zbl 0271.93012 · doi:10.1109/TAC.1973.1100417
[3] B. N. Datta: Quadratic forms, matrix equations and the matrix eigenvalue problem. Ph. D. Dissertation, University of Ottawa, March, 1972.
[4] B. N. Datta: Application of Hankel matrix to the root location problem. IEEE Trans. Auto-Automat. Control, AC-21 (1976), 210-212. · Zbl 0344.15012 · doi:10.1109/TAC.1976.1101282
[5] B. N. Datta: An algorithm for evaluating a matrix polynomial and its applications.
[6] B. N. Datta: Application of Hankel matrices of Markov parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn Problems. J. Math. Anal. Appl. 68 (1979), 276–290. · Zbl 0421.65035 · doi:10.1016/0022-247X(79)90115-X
[7] B. N. Datta: On the Routh-Hurwitz-Fujiwara and the Schur-Cohn-Fujiwara theorems for the root separation problems, Linear Algebra and its Applications. 22 (1978), 235-246. · Zbl 0387.15011 · doi:10.1016/0024-3795(78)90074-5
[8] F. R. Gantmacher: The Theory of Matrices. Vol. II, Chelsea, New York, 1959. · Zbl 0085.01001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.