Spindler, Heinz Der Satz von Grauert-Mülich für beliebige semistabile holomorphe Vektorbündel über dem \(n\)-dimensionalen komplex-projektiven Raum. (German) Zbl 0435.32018 Math. Ann. 243, 131-141 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 16 Documents MSC: 32L05 Holomorphic bundles and generalizations 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010) Keywords:semistable vector bundle; splitting-type Citations:Zbl 0318.32027 PDF BibTeX XML Cite \textit{H. Spindler}, Math. Ann. 243, 131--141 (1979; Zbl 0435.32018) Full Text: DOI EuDML OpenURL References: [1] Altman, A., Kleiman, S.: Introduction to Grothendieck duality theory. Lecture Notes in Mathematics 146. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0215.37201 [2] Barth, W.: Some properties of stable rank-2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · Zbl 0417.32013 [3] Fischer, G.: Complex analytic geometry. Lecture Notes in Mathematics 538. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0343.32002 [4] Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalen komplex-projektiven Raum. Manuscripta Math.16, 75-100 (1975) · Zbl 0318.32027 [5] Grauert, H., Remmert, R.: Analytische Stellenalgebren. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0231.32001 [6] Grothendieck, A.: Exposé 12 in Séminaire Cartan 13{\(\deg\)}. Paris 1960/61 [7] Maruyama, M.: Boundedness of semi-stable sheaves of small ranks. Preprint 1978 · Zbl 0395.14006 [8] Schneider, M.: Holomorphic vector bundles on ? n . Séminaire Bourbaki, 31e année, No. 530, 1878/79 (erscheint demnächst). [9] Siu, Y.-T.: Techniques of extension of analytic objects. New York: Deccer 1974 · Zbl 0294.32007 [10] Kleiman, S.: Les théorèmes des finitude pour le foncteur de Picard, S.G.A. 6. Lecture Notes in Mathematics 225. Berlin, Heidelberg, New York: Springer [11] Maruyama, M.: Moduli of stable sheaves. I. J. Math. Kyoto Univ.17, 91-126 (1977) · Zbl 0374.14002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.