×

Hilbert B(H)-modules and stationary processes. (English) Zbl 0435.60033


MSC:

60G10 Stationary stochastic processes
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
46L05 General theory of \(C^*\)-algebras
60G05 Foundations of stochastic processes
43A35 Positive definite functions on groups, semigroups, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] CHOI, M. D., A Schwartz inequality for positive linear maps on C*-algebras, IIIinois J. Math. 18 (1974), 565-574. · Zbl 0293.46043
[2] HALMOS, P. R., Introduction to Hilbert spaces and the theory of spectral multiplicity, Chelsea, New York, 1951. · Zbl 0045.05702
[3] KALLIANPUR, G. AND MANDREKAR, V., Spectral theory of stationary //-valued processes, J. Multivariate Anal. 1 (1971), 1-16. · Zbl 0248.60028
[4] KOLMOGOROV, A. N., Stationary sequences in Hilbert spaces, Bull. Math. Univ. Moscow, 2 (1941), 1-40. · Zbl 0063.03291
[5] MASANI, P., Recent trends in multivariate prediction theory, in Krishnaiah, P. R., Multivariate Analysis, Academic Press, New York, 1966. · Zbl 0216.46706
[6] PASCHKE, W. L., Inner product modules over /?*-algebras, Trans. Amer. Math. Soc.182 (1973), 443-468. · Zbl 0239.46062 · doi:10.2307/1996542
[7] PAYEN, R., Fonctions aleatoires du second ordre a valeurs dans un espace de Hilbert, Ann. Inst. H. Poincare 3 (1967), 323-396. · Zbl 0159.45901
[8] SAKAI, S., C*-algebras and TF*-algebras, Ergebn. Math. Grenzgeb. Vol. 60 (Springer, Berlin, 1971). · Zbl 0219.46042
[9] SCHATTEN, R., Norm ideals of completely continuous operators, Springer, Berlin, 1960. · Zbl 0090.09402
[10] UMEGAKI, H., Positive definite function and direct product Hilbert space, Tohoku Math. J. 7 (1955), 206-211. · Zbl 0066.36203 · doi:10.2748/tmj/1178245059
[11] UMEGAKI, H. AND BHARUCHA-REID, A. T., Banach space-valued random variables and tensor products of Banach spaces, J. Math. Anal. Appl. 31 (1970), 49-67. · Zbl 0292.60008 · doi:10.1016/0022-247X(70)90119-8
[12] STINESPRING, W. F., Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. · Zbl 0064.36703 · doi:10.2307/2032342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.