×

Vector-valued Lg-splines. I: Interpolating splines. (English) Zbl 0435.65007


MSC:

65D07 Numerical computation using splines
68W99 Algorithms in computer science
30C40 Kernel functions in one complex variable and applications
62M09 Non-Markovian processes: estimation
41A15 Spline approximation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Jerome, J.W; Schumaker, L.L, On lg-splines, J. approximation theory, 2, 29-49, (1969) · Zbl 0172.34501
[2] Weinert, H.L; Sidhu, G.S, On uniqueness conditions for optimal curve Fitting, J. optimization theory appl., 2, 211-216, (October 1977)
[3] Netravali, A.N; de Figueiredo, R.J.P, On a class of minimum energy controls related to spline functions, IEEE trans. automatic control, AC-21, 725-727, (1976) · Zbl 0332.49003
[4] Weinert, H.L; Kailath, T, A spline-theoretic approach to minimum energy control, IEEE trans. automatic control, AC-21, 391-393, (1976) · Zbl 0324.49030
[5] Weinert, H.L; Sidhu, G.S, A spline theoretic approach to minimum energy control—part II: systems with numerator dynamics and ARMA splines, ()
[6] de Figueiredo, R.J.P, Lmg-splines, ()
[7] Luenberger, D.G, Optimization by vector space methods, (1969), Wiley New York · Zbl 0176.12701
[8] Aronszajn, N, Theory of reproducing kernels, Trans. amer. math. soc., 68, 337-404, (1950) · Zbl 0037.20701
[9] Mercer, J, Functions of positive and negative type and their connection with the theory of integral equations, Philos. trans. roy. soc. London ser. A, 209, 415-446, (1909) · JFM 40.0408.02
[10] {\scG. S. Sidhu and H. L. Weinert}, Dynamic recursive algorithms for Lg-spline interpolation of EHB data, Appl. Math. and Computation, in press. · Zbl 0407.65007
[11] Parzen, E, (), 267
[12] Loève, M, Fonctions aleàtoires du second ordre, (), 367-420
[13] Kimeldorf, G; Wahba, G, Spline functions and stochastic processes, Sankhyā ser. A, 132, 173-180, (1970) · Zbl 0226.60064
[14] Kimeldorf, G; Wahba, G, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. math. statist., 41, 495-502, (1970) · Zbl 0193.45201
[15] Weinert, H.L, A reproducing kernel hibert space approach to spline problems with applications in estimation and control, ()
[16] Weinert, H.L; Kailath, T, Stochastic interpretations and recursive algorithms for spline functions, Ann. of statist., 2, 787-794, (1974) · Zbl 0287.65009
[17] Weinert, H.L; Sidhu, G.S, A stochastic framework for recursive computation of spline functions—part I: interpolating splines, IEEE trans. information theory, IT-24, 45-50, (1978) · Zbl 0385.65004
[18] Kailath, T, The innovations approach to detection and estimation theory, (), 680-695
[19] Weinert, H.L; Sidhu, G.S, Stochastic error analysis of spline interpolation, () · Zbl 0397.65008
[20] Wolovich, W.A, Linear multivariable systems, (1974), Springer-Verlag New York/Berlin · Zbl 0291.93002
[21] Carasso, C; Laurent, P.J; Carasso, C; Laurent, P.J, On the numerical construction and practical use of interpolating spline functions, (), 86-89, No. 8219 · Zbl 0191.44901
[22] Munteanu, M.J; Schumaker, L.L, On a method of carasso and Laurent for constructing interpolating splines, Math. comp., 27, No. 122, 317-325, (April 1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.