×

zbMATH — the first resource for mathematics

Linear programs with an additional reverse convex constraint. (English) Zbl 0435.90065

MSC:
90C05 Linear programming
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Avriel and A. C. Williams, An extension of geometric programming with applications in engineering optimization,J. Eng. Math., 5, 187-194 (1971). · doi:10.1007/BF01535411
[2] M. Balinski, An algorithm for finding all the vertices of convex polyhedral sets,J. SIAM., 9, 72-88 (1961). · Zbl 0108.33203
[3] P. P. Bansal and S. E. Jacobsen, Characterization of local solutions for a class of nonconvex programs,J. Optimization Theory and Applications, 15, No. 5, May 1975. · Zbl 0281.90078
[4] P. P. Bansal and S. E. Jacobsen, An algorithm for optimizing network flow capacity under economies-of-scale,J. Optimization Theory and Applications, 15, No. 5, May 1975. · Zbl 0281.90077
[5] M. Carrillo,An Algorithm for Finding the Vertices of a Convex Polyhedron, University of Texas at Dallas, 1977. · Zbl 0362.90108
[6] R. Carvajal-Moreno,Minimization of Concave Functions Subject to Linear Constraints, Operations Research Center Report ORC72-3, University of California, Berkeley, 1972.
[7] M. E. Dyer and L. G. Proll, An algorithm for determining all extreme points of a convex polytope,Mathematical programming, 12, 81-96 (1977). · Zbl 0378.90059 · doi:10.1007/BF01593771
[8] R. J. Hillestad, Optimization problems subject to a budget constraint with economies of scale,Operations Research, 23, No. 6, Nov.?Dec. 1975. · Zbl 0335.90039
[9] R. J. Hillestad and S. E. Jacobsen, Reverse convex programming,Appl. Math. Optim. 6, 63-78 (1980). · Zbl 0448.90044 · doi:10.1007/BF01442883
[10] S. Kararmadian, Duality in mathematical programming,J. Math. Analysis and Appl., 20, 344-358 (1967). · Zbl 0157.49603 · doi:10.1016/0022-247X(67)90095-9
[11] R. Meyer, The validity of a family of optimization methods,SIAM J. Control, 8, 41-54 (1970). · Zbl 0194.20501 · doi:10.1137/0308003
[12] J. B. Rosen, Iterative solution of nonlinear optimal control problems,SIAM J. Control, 4, 223-244 (1966). · Zbl 0229.49025 · doi:10.1137/0304021
[13] J. Stoer, and C. Witzgall,Convexity and Optimization in Finite Dimensions, Springer-Verlag, New York, 1970. · Zbl 0203.52203
[14] H. Tuy, Concave programming under linear constraints,Soviet Mathematics, 5, 1437-1440, 1964. · Zbl 0132.40103
[15] U. Ueing, A combinatorial method to compute a global solution of certain nonconvex optimization problems, inNumerical Methods for Nonlinear Optimization, F. A. Lootsma (ed.), Academic Press, 223-230 (1972). · Zbl 0267.90088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.