zbMATH — the first resource for mathematics

Modular curves and the class group of \(\mathbb{Q} (\zeta_p)\). (English) Zbl 0436.12004

11R23 Iwasawa theory
11R32 Galois theory
11F11 Holomorphic modular forms of integral weight
14G25 Global ground fields in algebraic geometry
11R18 Cyclotomic extensions
Full Text: DOI EuDML
[1] Cassels, J.W.S., Fröhlich, A.: Algebraic number theory. London-New York: Academic Press 1967 · Zbl 0153.07403
[2] Coates, J.: ?p-adicL-functions and Iwasawa’s theory,? in Algebraic Number Fields, edited by Fröhlich, A., New York: Academic Press 1977 · Zbl 0393.12027
[3] Coates, J., Lichtenbaum, S.: Onl-adic zeta functions. Ann. of Math.98, 498-550 (1973) · Zbl 0279.12005
[4] Deligne, P.: Formes modulaires et représentationsl-adiques, Séminaire Bourbaki 68/69 no. 355, Lecture Notes in Mathematics 179, 136-172, Berlin-Heidelberg-New York: Springer 1971
[5] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications Mathématiques I.H.E.S.,36, 75-109 (1969) · Zbl 0181.48803
[6] Deligne, P., Rapoport, M.: Schémas de modules de courbes elliptiques, Lecture Notes in Mathematics,349. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0281.14010
[7] Gras, G.: Classes d’idéaux des corps abéliens et nombres de Bernoulli généralisés. Ann. Inst. Fourier,27, 1-66 (1977) · Zbl 0336.12004
[8] Greenberg, R.: Onp-adicL-functions and cyclotomic fields. Nagoya Math. J.,56, 61-77 (1974)
[9] Greenberg, R.: Onp-adicL-functions and cyclotomic fields II, Nagoya Math. J.,67, 139-158 (1977) · Zbl 0373.12007
[10] Hartshorne, R.: Residues and duality, Lecture Notes in Mathematics,20, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0196.24301
[11] Hartshorne, R.: Algebraic Geometry. New York-Heidelberg-Berlin: Springer 1977 · Zbl 0367.14001
[12] Iwasawa, K.: On some modules in the theory of cyclotomic fields. J. Math. Soc. Japan,16, 42-82 (1964) · Zbl 0125.29207
[13] Iwasawa, K.: OnZ 1-extensions of algebraic number fields. Ann. of Math.,98, 246-326 (1973) · Zbl 0285.12008
[14] Kubert, D., Lang, S.: Thep-primary component of the cuspidal divisor class group on the modular curveX(p). Math. Ann.234, 25-44 (1978) · Zbl 0371.12025
[15] Lang, S.: Introduction to modular forms. New York-Heidelberg-Berlin: Springer 1976 · Zbl 0344.10011
[16] Lang, S.: Cyclotomic fields. New York-Heidelberg-Berlin: Springer 1978 · Zbl 0395.12005
[17] Mazur, B.: Modular curves and the Eisenstein ideal. Publications Mathématiques I.H.E.S.,47 (1978)
[18] Mazur, B.: Rational isogenies of prime degree. Inv. Math.44, 129-162 (1978) · Zbl 0386.14009
[19] Ogg, A.: Rational points on certain elliptic modular curves. Proc. Symp. Pure Math.24, 221-231 (1973) · Zbl 0273.14008
[20] Oort, F., Tate, J.: Group schemes of prime order. Ann. Scient. Ec. Norm. Sup., série4, 3, 1-21 (1970) · Zbl 0195.50801
[21] Ribet, K.: A modular construction of unramifiedp-extensions of Q(? p ). Inv. Math.,34, 151-162 (1976) · Zbl 0338.12003
[22] Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique p. Symp. Int. de Top. Alg., Mexico, 1958
[23] Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Publ. Math. Soc. Japan,11, Tokyo-Princeton (1971) · Zbl 0221.10029
[24] E.G.A. III: Eléments de géométrie algébrique, by A. Grothendieck and J. Dieudonné, Publications Mathématiques I.H.E.S.,11 (1961)
[25] E.G.A. IV: Eléments de géométrie algébrique, by A. Grothendieck and J. Dieudonné, Publications Mathématiques I.H.E.S.,24 (1965)
[26] S.G.A. 5: Séminaire de géométrie algébrique du Bois-Marie, Lecture Notes in Mathematics589, Berlin-Heidelberg-New York: Springer 1977
[27] S.G.A. 7: Séminaire de géométrie algébrique du Bois-Marie, Lecture Notes in Mathematics288, Berlin-Heidelberg-New York: Springer 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.