×

zbMATH — the first resource for mathematics

Commutative rings of which all radicals are left exact. (English) Zbl 0436.13009

MSC:
13D30 Torsion theory for commutative rings
13A10 Radical theory on commutative rings (MSC2000)
16P20 Artinian rings and modules (associative rings and algebras)
16L60 Quasi-Frobenius rings
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
18E40 Torsion theories, radicals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson F.W., Rings and categories of modules 13 (1974) · Zbl 0301.16001 · doi:10.1007/978-1-4684-9913-1
[2] Bican L., Commentationes Mathematicae 14 pp 295– (1973)
[3] Bronowitz R., J.Pure Appl.Algebra 3 pp 329– (1973) · Zbl 0272.16010 · doi:10.1016/0022-4049(73)90035-2
[4] Jans J.P., Pacific J.Math 15 pp 1249– (1965) · Zbl 0142.28002 · doi:10.2140/pjm.1965.15.1249
[5] Katayama H., A note on locally injective modules and QF-3’ modules
[6] Kurata Y., Osaka J.Math 13 pp 555– (1976)
[7] Mbuntum F.F., Comm.in Algebra 5 pp 555– (1977) · Zbl 0357.16002 · doi:10.1080/00927877708822182
[8] Osofsky B.L., Pacific J.Math 14 pp 645– (1964) · Zbl 0145.26601 · doi:10.2140/pjm.1964.14.645
[9] Popescu N., Rev.Roum.Math.Pures et Appl 9 pp 1413– (1973)
[10] Tachikawa H., J.Algebra 56 pp 1– (1979) · Zbl 0427.16005 · doi:10.1016/0021-8693(79)90320-X
[11] Stenström B., Rings of quotients (1975) · doi:10.1007/978-3-642-66066-5
[12] Wakamatsu, T. Remarks on adjoints and torsion theories. Proceddings of the 11th Symposium on Ring Theory. pp.47–59. · Zbl 0427.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.