×

zbMATH — the first resource for mathematics

Invariant theory for generalized root systems. (English) Zbl 0436.17005

MSC:
17B65 Infinite-dimensional Lie (super)algebras
17B20 Simple, semisimple, reductive (super)algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Asch, A. van: Modular forms and root systems. Math. Ann.222, 145-170 (1976) · Zbl 0329.10017 · doi:10.1007/BF01418325
[2] Baily, W.L. Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442-528 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[3] Bernstein, I.N. Schwartzman, O.W. Chevalley’s theorem for complex cristallographic Coxeter groups. Funkcional. Anal. i Prilo?en.12, 79-80 (1978)
[4] Bourbaki, N.: Groupes et Algèbres de Lie, Ch. 4, 5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[5] Kac, V.G.: Graded Lie algebras and symmetric spaces. Funkcional Anal. i Prilo?en.2, 93-94 (1968)
[6] Kac, V.G.: Infinite-dimensional Lie algebras and Dedekind’s eta function. Funkcional Anal. i Prilo?en.8, 77-78 (1974) · Zbl 0298.57019 · doi:10.1007/BF02028317
[7] Kac, V.G.: Infinite-dimensional algebras, Dedekind’s eta function, classical Möbius function and the very strange formula. Advances in Math.30, 85-136 (1978) · Zbl 0391.17010 · doi:10.1016/0001-8708(78)90033-6
[8] Looijenga, E.: Root systems and elliptic curves. Invent. Math.38, 17-32 (1976) · Zbl 0358.17016 · doi:10.1007/BF01390167
[9] Looijenga, E.: Homogeneous spaces associated to unimodal singularities. Proc. of the Intern. Congr. of Math. Helsinki, 277-281 (1978)
[10] Macdonald, I.G.: Affine root systems and Dedekind’s eta function. Invent. Math.15, 91-143 (1972) · Zbl 0244.17005 · doi:10.1007/BF01418931
[11] Moody, R.V.: A new class of Lie algebras. J. Algebra10, 211-230 (1968) · Zbl 0191.03005 · doi:10.1016/0021-8693(68)90096-3
[12] Moody, R.V., Lepowski, J.: Hyperbolic Lie algebras and quasiregular, cusps on Hilbert modular surfaces. Math. Ann.245, 63-88 (1979) · Zbl 0408.17007 · doi:10.1007/BF01420431
[13] Moody, R.V., Teo, K.L.: Tits’ systems with crystallographic Weyl groups. J. Algebra21, 178-190 (1972) · Zbl 0232.20089 · doi:10.1016/0021-8693(72)90016-6
[14] Saito, K.: Einfach-elliptische Singularitäten. Invent. Math.23, 289-325 (1974) · Zbl 0296.14019 · doi:10.1007/BF01389749
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.