Pisier, G. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. (French) Zbl 0436.47013 Ann. Sci. Éc. Norm. Supér. (4) 13, 23-43 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 31 Documents MSC: 47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators 47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.) 47L10 Algebras of operators on Banach spaces and other topological linear spaces Keywords:factorization of operators through Hilbert space; Banach spaces of cotype 2; compact non nuclear problem × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] R. BLEI , A Uniformity Property for \Lambda (2) Sets and Grothendieck’s Inequality (Symposia Math., vol. 22, 1977 , p. 321-336). MR 58 #6892 | Zbl 0453.43008 · Zbl 0453.43008 [2] W. DAVIS et W. B. JOHNSON , Compact, Non-Nuclear Operators (Studia Math., vol. 51, 1974 , p. 81-85). Article | MR 50 #5514 | Zbl 0286.47015 · Zbl 0286.47015 [3] E. DUBINSKY , A. PELCZYŃSKI et H. P. ROSENTHAL , On Banach Spaces X for which \?2(\Bbb L\infty , X) = B(\Bbb L\infty , X) (Studia Math., vol. 44, 1972 , p. 617-648). Article | Zbl 0262.46018 · Zbl 0262.46018 [4] A. DVORETZKY , Some Results on Convex Bodies and Banach Spaces (Proc. Symp. on Linear Spaces, Jérusalem, 1961 , p. 123-160). MR 25 #2518 | Zbl 0119.31803 · Zbl 0119.31803 [5] T. FIGIEL , J. LINDENSTRAUSS et V. MILMAN , The Dimensions of Almost Spherical Sections of Convex Bodies (Acta Math., vol. 139, 1977 , p. 53-94). MR 56 #3618 | Zbl 0375.52002 · Zbl 0375.52002 · doi:10.1007/BF02392234 [6] A. GROTHENDIECK , Résumé de la théorie métrique des produits tensoriels topologiques (Bol. Soc. Matem., Sao Paulo, vol. 8, 1956 , p. 1-79). MR 20 #1194 | Zbl 0074.32303 · Zbl 0074.32303 [7] A. GROTHENDIECK , Produits tensoriels topologiques et espaces nucléaires (Memoirs A.M.S., Providence, Rhode Island, n^\circ 16, 1955 ). MR 17,763c | Zbl 0123.30301 · Zbl 0123.30301 [8] C. S. HERZ , Drury’s Lemma and Helson Sets (Studia Math., vol. 42, 1972 , p. 205-219). MR 46 #5939 | Zbl 0215.47101 · Zbl 0215.47101 [9] F. JOHN , Extremum Problems with Inequalities as Subsidiary Conditions , courant Anniversary Volume, Interscience, New York, 1948 , p. 187-204. MR 10,719b | Zbl 0034.10503 · Zbl 0034.10503 [10] W. B. JOHNSON , On Finite Dimensional Subspaces of Banach Spaces with Local Unconditional Structure (Studia Math., vol. 51, 1974 , p. 225-240). Article | MR 50 #10772 | Zbl 0301.46012 · Zbl 0301.46012 [11] W. B. JOHNSON , H. KÖNIG , B. MAUREY et R. RETHERFORD , Eigenvalues of p-Summing and lp-Type Operators in Banach Spaces (J. Funct. Anal., vol. 32, 1979 , p. 353-380). Zbl 0408.47019 · Zbl 0408.47019 · doi:10.1016/0022-1236(79)90046-6 [12] H. KÖNIG , R. RETHERFORD et N. TOMCZAK , Jaegermann, Eigenvalues of (p, 2)-Summing Operators and Constants Associated with Normed Spaces [J. Funct. Anal. (à paraître)]. Zbl 0434.47033 · Zbl 0434.47033 · doi:10.1016/0022-1236(80)90029-4 [13] S. KWAPIEŃ , Isomorphic Characterizations of Inner Product Spaces [Studia Math., vol. 44, 1972 , p. 187-199 (voir aussi l’exposé 8 du Séminaire Maurey-Schwartz, 1972 - 1973 , École polytechnique, Paris)]. [14] S. KWAPIEŃ , On Operators Factorizable Through Lp-Spaces (Bull. Soc. math. Fr., Mémoire, vol. 31-32, 1972 , p. 215-225). Numdam | Zbl 0246.47040 · Zbl 0246.47040 [15] B. MAUREY , Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp (Astérisque, n^\circ 11, 1974 , Soc. Math. Fr.). MR 49 #9670 | Zbl 0278.46028 · Zbl 0278.46028 [16] B. MAUREY , Quelques problèmes de factorisation d’opérateurs linéaires (Actes du Congrès international des mathématiciens, Vancouver, vol. II, 1974 , p. 75). Zbl 0343.47012 · Zbl 0343.47012 [17] B. MAUREY , Un théorème de prolongement (C. R. Acad. Sc., Paris, série A, t. 279, 1974 , p. 329-332). MR 50 #8013 | Zbl 0291.47001 · Zbl 0291.47001 [18] B. MAUREY et G. PISIER , Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach (Studia Math., vol. 58, 1976 , p. 45-90). Article | MR 56 #1388 | Zbl 0344.47014 · Zbl 0344.47014 [19] A. PIETSCH , Operators Ideals , Berlin, 1978 , Deutsche Verlag der Wissenschaften. MR 81a:47002 | Zbl 0399.47039 · Zbl 0399.47039 [20] G. PISIER , Grothendieck’s Theorem for Non Commutative C*-algebras with an Appendix on Grothendieck’s Constants (J. Funct. Anal., vol. 29, 1978 , p. 397-415). MR 80j:47027 | Zbl 0388.46043 · Zbl 0388.46043 · doi:10.1016/0022-1236(78)90038-1 [21] G. PISIER , Une nouvelle classe d’espace de Banach vérifiant le théorème de Grothendieck (Ann. Inst. Fourier, vol. 28, 1978 , p. 69-90). Numdam | MR 58 #7041 | Zbl 0363.46019 · Zbl 0363.46019 · doi:10.5802/aif.681 [22] G. PISIER , Topics on Grothendieck’s Theorem . Proceedings of the International Conference on Operator Algebras, Operator Ideals and Theoretical Physics, Leipzig, septembre 1977 . Zbl 0412.46008 · Zbl 0412.46008 [23] G. PISIER , Un nouveau théorème de factorisation (C. R. Acad. Sc., Paris, série A, t. 285, 1977 , p. 715-718). MR 56 #16422 | Zbl 0383.46003 · Zbl 0383.46003 [24] G. PISIER , Estimations des distances à un espace euclidien et des constantes de projection des espaces de Banach de dimension finie , d’après H. KONIG et al., exposé n^\circ X (Séminaire d’Analyse fonctionnelle, École polytechnique, Palaiseau, 1978 - 1979 ). Numdam | Zbl 0412.46009 · Zbl 0412.46009 [25] N. TOMCZAK-JAEGERMANN , On the Moduli of Smoothness and Convexity and the Rademacher Averages of the Trace Classes Sp (1 \? p < \infty ) (Studia Math., vol. 50, 1974 , p. 163-182). Article | MR 50 #8141 | Zbl 0282.46016 · Zbl 0282.46016 [26] I. I. TSEITLIN , On a Particular Case of the Existence of a Compact Linear Operator which is Not Nuclear (Funk. Anal. i. Pril., vol. 6, 1973 , p. 102). Zbl 0288.47025 · Zbl 0288.47025 · doi:10.1007/BF01077667 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.