×

zbMATH — the first resource for mathematics

Structural stability of Lorenz attractors. (English) Zbl 0436.58018

MSC:
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37C75 Stability theory for smooth dynamical systems
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J. Guckenheimer, A Strange, Strange Attractor, inThe Hopf Bifurcation Theorem and its Applications, ed. byJ. E. Marsden andM. McCracken, Springer-Verlag (1976), 368–381.
[2] J. Guckenheimer, On Bifurcations of Maps of the Interval,Inv. Math., to appear. · Zbl 0354.58013
[3] M. Hirsch, C. Pugh, Stable Manifolds and Hyperbolic Sets,Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc. (1970), 133–163. · Zbl 0215.53001
[4] M. Hirsch, C. Pugh, M. Shub,Invariant Manifolds, Springer Lecture Notes in Math.,583 (1977).
[5] E. Lorenz, Deterministic Nonperiodic Flow,Journal of Atmospheric Sciences,20 (1963), 130–141. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[6] J. Palis, S. Smale, Structural Stability Theorems,Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc., 1970, 223–231. · Zbl 0214.50702
[7] W. Parry, Symbolic dynamics and transformations of the unit interval,Trans. Amer. Math. Soc.,122 (1966), 368–378. · Zbl 0146.18604 · doi:10.1090/S0002-9947-1966-0197683-5
[8] C. L. Siegel, J. Moser,Lectures on Celestial Mechanics, Springer-Verlag, 1971. · Zbl 0312.70017
[9] S. Smale, Differential Dynamical Systems,Bull. Am. Math. Soc.,73 (1967), 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[10] F. Takens, Partially Hyperbolic Fixed Points,Topology,10 (1971), 133–147. · Zbl 0214.22901 · doi:10.1016/0040-9383(71)90035-8
[11] R. F. Williams, Expanding Attractors,Publ. I.H.E.S., no.43 (1974), 196–203. · Zbl 0279.58013
[12] R. F. Williams,The Structure of Lorenz Attractors, Preprint. · Zbl 0484.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.