×

Structural stability of Lorenz attractors. (English) Zbl 0436.58018


MSC:

37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37C75 Stability theory for smooth dynamical systems

Citations:

Zbl 0346.58007
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] J. Guckenheimer, A Strange, Strange Attractor, inThe Hopf Bifurcation Theorem and its Applications, ed. byJ. E. Marsden andM. McCracken, Springer-Verlag (1976), 368–381.
[2] J. Guckenheimer, On Bifurcations of Maps of the Interval,Inv. Math., to appear. · Zbl 0354.58013
[3] M. Hirsch, C. Pugh, Stable Manifolds and Hyperbolic Sets,Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc. (1970), 133–163. · Zbl 0215.53001
[4] M. Hirsch, C. Pugh, M. Shub,Invariant Manifolds, Springer Lecture Notes in Math.,583 (1977).
[5] E. Lorenz, Deterministic Nonperiodic Flow,Journal of Atmospheric Sciences,20 (1963), 130–141. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[6] J. Palis, S. Smale, Structural Stability Theorems,Proceedings of Symposia in Pure Mathematics XIV, Am. Math. Soc., 1970, 223–231. · Zbl 0214.50702
[7] W. Parry, Symbolic dynamics and transformations of the unit interval,Trans. Amer. Math. Soc.,122 (1966), 368–378. · Zbl 0146.18604 · doi:10.1090/S0002-9947-1966-0197683-5
[8] C. L. Siegel, J. Moser,Lectures on Celestial Mechanics, Springer-Verlag, 1971. · Zbl 0312.70017
[9] S. Smale, Differential Dynamical Systems,Bull. Am. Math. Soc.,73 (1967), 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[10] F. Takens, Partially Hyperbolic Fixed Points,Topology,10 (1971), 133–147. · Zbl 0214.22901 · doi:10.1016/0040-9383(71)90035-8
[11] R. F. Williams, Expanding Attractors,Publ. I.H.E.S., no.43 (1974), 196–203. · Zbl 0279.58013
[12] R. F. Williams,The Structure of Lorenz Attractors, Preprint. · Zbl 0484.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.