Soule, C. K-théorie des anneaux d’entiers de corps de nombres et cohomologie etale. (French) Zbl 0437.12008 Invent. Math. 55, 251-295 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 127 Documents MSC: 11R70 \(K\)-theory of global fields 11R80 Totally real fields 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry 14F20 Étale and other Grothendieck topologies and (co)homologies 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) Keywords:Quillen’s K-theory; etale cohomology; values of zeta-function; K-theory with coefficients; transfer; Lichtenbaum conjecture; Quillen conjecture Citations:Zbl 0284.12005; Zbl 0279.12005 PDF BibTeX XML Cite \textit{C. Soule}, Invent. Math. 55, 251--295 (1979; Zbl 0437.12008) Full Text: DOI EuDML OpenURL References: [1] Artin, M.: Grothendieck Topologies. Springer 1962 · Zbl 0208.48701 [2] Artin, M., Verdier, J.L.: Seminar on Etale Cohomology of number fields. AMS Summer Institute on Algebraic geometry 1964 [3] Bayer, P., Neukirch, J.: On values of zeta functions and ?-adic Euler characteristics. Inventiones math.50, 35-64 (1978) · Zbl 0409.12018 [4] Bass, H.: AlgebraicK-theory. New York: Benjamin 1968 · Zbl 0174.30302 [5] Bass, H., Tate, J.: The Milnor ring of a global field. ?AlgebraicK-theory II?. Lecture Notes in Mathematics no. 342. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0299.12013 [6] Bloch, S.: Higher regulators, AlgebraicK-theory, and zeta functions of elliptic curves. Preprint [7] Bloch, S.: AlgebraicK-theory and crystalline cohomology, I.H.E.S., no 47, 187-268 (1978) · Zbl 0388.14010 [8] Bloch, S.: Some formulas pertaining to theK-theory of commutative groupschemes. Preprint, 1977 [9] Bloch, S., Ogus, A.: Gersten’s Conjecture and the homology of schemes. Ann. Scient. Ec. Norm. Sup.,7, fasc. 2 (1974) · Zbl 0307.14008 [10] Borel, A.: Stable real cohomology of arithmetic groups. Ann. Scient. Ec. Norm. Sup., 4è série,7, 235-272 (1974) · Zbl 0316.57026 [11] Browder, W.: AlgebraicK-theory with coefficientsZ/p, dans ?Geometry applications of Homotopy Theory I?. Lecture notes in Mathematics no. 657. Berlin-Heidelberg-New York: Springer 1978 [12] Cartan, E., Eilenberg, S.: Homological Algebra, Princeton University Press, 1956 [13] Cassels, J.W., Fröhlich, A.: Algebraic Number Theory. New York-London: Academic Press, 1967 · Zbl 0153.07403 [14] Charney, R.: Homology Stability forGL n of a Dedekind domain, à paraître [15] Coates, J., Lichtenbaum, S.: On ?-adic zêta functions. Annals of Maths.,98, 498-550 (1973) · Zbl 0279.12005 [16] Deligne, P., Ribet, K.: Values of abelianL-functions at negative integers, à paraître aux Inventiones math. · Zbl 0434.12009 [17] Farrell, F.T., Hsiang, W.C.: On the rational homotopy groups of the diffeomorphisms groups of discs, spheres and aspherical manifolds. · Zbl 0393.55018 [18] Ferrero, B., Washington, L.C.: The Iwasawa invariant? p for abelian number fields. A paraître aux Annals of Maths. · Zbl 0443.12001 [19] Gillet, H.: The applications of AlgebraicK-theory to intersection theory. Thèse, preprint [20] Grayson, D.: Higher AlgebraicK-theory II. Lecture notes in Mathematics no 551. Berlin-Heidelberg-New York: Springer 1976 [21] Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets. Dans “10 exposés sur la cohomologie des schémas{”. Masson: North-Holland 1968} [22] Grothendieck, A.: Eléments de Géométrie Algébrique, Chapitre 0, §13, Publications I.H.E.S. no 11, 1961 [23] Harris, B., Segal, G.:K i of rings of algebraic integers. Ann. of Maths.101, 20-33 (1975) · Zbl 0331.18015 [24] Hiller, H.: ?-rings and algebraicK-theory. Preprint [25] Illusie, L.: Lettre à Gersten, 24/2/1974 [26] Karoubi, M.: A paraître [27] Kato, K.: A generalization of local class field theory by usingK-groups, I et II. Proc. Japan Acad.53, 140-143 (1977)54, 250-255 (1979) · Zbl 0379.32023 [28] Kratzer, C.: Opérations d’Adams enK-théorie algébrique, Note aux C.R. Acad. Sc. Paris,287, Série A, 297 (1978) et article en préparation [29] Lee, R., Szczarba, R.H.: The groupK 3(?) is cyclic of order 48, Ann. of Math.,104, 31-60 (1976) · Zbl 0341.18008 [30] Lee, R., Szczarba, R.H.: On the torsion inK 4(?) andK 5(?). Duke Journal, 1978 [31] Lichtenbaum, S.: On the values of zéta andL-functions, I. Ann. of Maths.,96, 338-360 (1972) · Zbl 0251.12002 [32] Lichtenbaum, S.: Values of zeta functions, étale cohomology, and algebraicK-theory. Dans ?Alg.K-theory II?. Lecture notes in Mathematics no 342. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0284.12005 [33] Loday, J.L.:K-théorie et représentations de groupes. Ann. Scient. Ec. Norm. Sup. 4ème série,9, 309-377 (1976) [34] Maazen, H.: Stabilité de l’homologie deGL n . C.R. Acad. Sc. Paris,288, 707-708 (1979) · Zbl 0411.20028 [35] Milnor, J.: Introduction to AlgebraicK-theory. Annals of Maths. Studies no 72. Princeton [36] Milnor, J., Stasheff, J.D.: Characteristic classes; Appendice, Annals of Maths. Studies, no67, 1974 · Zbl 0298.57008 [37] Parshin, A.I.: Corps de classes etK-théorie algébrique, Ouspekhi Math. N.T. 30,1, 253-254 (1975) (en russe), et “Class Field Theory for Arthmetical schemes{”, preprint} [38] Quillen, D.: AlgebraicK-theory I. Lecture Notes no 341 [39] Quillen, D.: On the cohomology andK-theory of the general linear groups over a finite field. Annals of Maths.,96, 552-586 (1972) · Zbl 0249.18022 [40] Quillen, D.: Lettre à Milnor sur \(\operatorname{Im} (\pi _i O\mathop \to \limits^J \pi _i^s \to K_i \mathbb{Z})\) . Lecture Notes in Mathematics no 551. Berlin-Heidelberg-New York: Springer 1976 [41] Quillen, D.: Finite generation of the groupsK i of rings of algebraic integers. Lecture Notes in Mathematics no 341, pp. 179-210. Berlin-Heidelberg-New York: Springer 1973 [42] Quillen, D.: Cours à M.I.T., 1974-75 [43] Raynaud, M.: Caractéristique d’Euler Poincaré d’un faisceau et cohomologie des variétés abéliennes, dans “dix exposés sur la cohomologie des schémas{”, north Holland: Masson 1968} [44] Séminaire de Géométrie Algébrique IV: Exposé VIII, A. Grothendieck, Lecture notes in Mathematics no 270. Berlin-Heidelberg-New York: Springer 1972 [45] S.G.A. IV 1/2: Cohomologie étale: les points de départ, par P. Deligne, rédigé par J.F. Boutot. Lecture notes in Mathematics no 569. Berlin-Heidelberg-New York: Springer 1977 [46] Serre, J-P.: Corps locaux. Hermann, Act. Scient. et Ind., 1968 [47] Serre, J-P.: Cohomologie galoisienne. Lecture notes in Mathematics no. 5. Berlin-Heidelberg-New York: Springer 1964 · Zbl 0143.05901 [48] Serre, J-P.: Homologie singulière des espaces fibrés. Applications. Ann. of Maths. (2)54, 425-505 (1951) · Zbl 0045.26003 [49] Serre, J-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Séminaire Delange-Poitou-Pisot no 19, 1969/70 [50] Soulé, C.: Addendum to the article “On the torsion inK *(?){”. Duke Journal, pp. 131-132 (1978)} [51] Soulé, C.: Classes de torsion dans la cohomologie des groupes arithmétiques. C.R. Acad. Sc. Paris,284, 1009-1011 (1977) · Zbl 0346.55023 [52] Soulé, C.:K-théorie de ? et cohomologie étale. C.R. Acad. Sc. Paris,286, 1179-1181 (1978) · Zbl 0394.55004 [53] Soulé, C.: Groupes arithmétiques etK-théorie des anneaux d’entiers de corps de nombres. Thèse, Paris VII, 1978 [54] Tate, J.: Relations betweenK 2 and Galois cohomology. Inventiones Math.,36, 257-274 (1976) · Zbl 0359.12011 [55] Tate, J.: Algebraic cycles and poles of zeta functions, dans “Arithmetical Algebraic Geometry{” (O.F.G. Schilling ed.), p. 93, 1963} [56] Wagstaff, S.: The irregular primes to 125000. Math. Computations, p. 583, A.M.S. 1978 · Zbl 0377.10002 [57] Waldhausen, F.: AlgebraicK-theory of generalized free products, I et II. Annals of Maths.,108, 135-204, 205-256 (1978) · Zbl 0397.18012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.