Kelly, G. M. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. (English) Zbl 0437.18004 Bull. Aust. Math. Soc. 22, 1-83 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 102 Documents MSC: 18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads 18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) 18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects) 18A25 Functor categories, comma categories 18D10 Monoidal, symmetric monoidal and braided categories (MSC2010) Keywords:associated sheaves; free algebra; free monad; free monoid; colimits of algebras; transfinite construction; generalized sheaf categories; adjoints to algebraic functors; comma-category Citations:Zbl 0437.18003 PDF BibTeX XML Cite \textit{G. M. Kelly}, Bull. Aust. Math. Soc. 22, 1--83 (1980; Zbl 0437.18004) Full Text: DOI OpenURL References: [1] Barr, Coequalizers and free triples, II (1979) · Zbl 0194.01701 [2] DOI: 10.1016/0022-4049(77)90067-6 · Zbl 0361.18001 [3] Adámek, Bull. Austral. Math. Soc. 17 pp 433– (1977) [4] DOI: 10.1016/0022-4049(78)90010-5 · Zbl 0413.18005 [5] Schubert, Categories (1972) [6] DOI: 10.1016/0022-4049(77)90028-7 · Zbl 0385.18006 [7] Kurková-Pohlová, Comment. Math. Univ. Carolin. 15 pp 577– (1974) [8] DOI: 10.1016/0022-4049(79)90007-0 · Zbl 0403.18002 [9] Koubek, Mathematical foundations of computer science 32 pp 280– (1975) [10] Koubek, Constructions of continuous functors (1978) [11] Kelly, Cahiers Topologie Géom. Différentielle 16 pp 259– (1975) [12] DOI: 10.1007/BFb0063101 [13] Gabriel, Lokal präsentierbare Kategorien 221 (1971) · Zbl 0225.18004 [14] DOI: 10.1016/0022-4049(72)90001-1 · Zbl 0257.18005 [15] DOI: 10.1016/0021-8693(74)90095-7 · Zbl 0291.18010 [16] DOI: 10.1007/BF01111838 · Zbl 0194.01701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.