×

zbMATH — the first resource for mathematics

Density questions in the classical theory of moments. (English) Zbl 0437.42007

MSC:
42A70 Trigonometric moment problems in one variable harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] N.I. AKHIEZER, The classical moment problem, Oliver and Boyd, Edinburgh, 1965. · Zbl 0173.41001
[2] H. BAUER, Wahrscheinlichkeitstheorie und grundzüge der masstheorie, De Gruyter, Berlin, 1978. · Zbl 0381.60001
[3] G. FREUD, Orthogonal polynomials, Pergamon Press, Oxford, 1971. · Zbl 0226.33014
[4] E. HEWITT, Remark on orthonormal sets in L2 (a, b), Amer. Math. Monthly, 61 (1954), 249-250. · Zbl 0055.06002
[5] M.A. NAIMARK, Extremal spectral functions of a symmetric operator, Izv. Akad. Nauk. SSSR, ser. matem., 11 ; Dokl. Akad. Nauk. SSSR, 54 (1946), 7-9. · Zbl 0061.26006
[6] R.R. PHELPS, Lectures on Choquet’s theorem, Van Nostrand, New York, 1966. · Zbl 0135.36203
[7] M. RIESZ, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci., Szeged., 1 (1923), 209-225. · JFM 49.0708.02
[8] J.A. SHOHAT and J.D. TAMARKIN, The problem of moments, AMS, New York, 1943. · Zbl 0063.06973
[9] E.M. STEIN and G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971. · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.