Yajima, Kenji A multi-channel scattering theory for some time dependent Hamiltonians, charge transfer problem. (English) Zbl 0437.47008 Commun. Math. Phys. 75, 153-178 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 22 Documents MSC: 47A40 Scattering theory of linear operators 81U10 \(n\)-body potential quantum scattering theory 35P25 Scattering theory for PDEs Keywords:multi-channel wave operators; Schrödinger equations with time dependent potentials × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agmon, S.: Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Pisa, Ser. IV,2.2, 151-218 (1975) · Zbl 0315.47007 [2] Combes, J. M.: Relatively compact interactions in many particle systems. Commun. Math. Phys.12, 283-295 (1969) · Zbl 0174.28304 · doi:10.1007/BF01667314 [3] Faddeev, L. D.: Mathematical aspect of the three body problem in the quantum mechanical scattering theory. Israel program for scientific translations, Jerusalem, 1965 (English translation from Russian) [4] Ginibre, J., Moulin, M.: Hilbert space approach to the quantum mechanical three body problem. Ann. Inst. H. Poincaré21, 97-145 (1974) · Zbl 0311.47003 [5] Howland, J.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann.207, 315-335 (1974) · doi:10.1007/BF01351346 [6] Howland, J.: Abstract stationary theory for multi-channel scattering theory. J. Funct. Anal.22, 250-282 (1976) · Zbl 0327.47004 · doi:10.1016/0022-1236(76)90012-4 [7] Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann.162, 258-279 (1966) · Zbl 0139.31203 · doi:10.1007/BF01360915 [8] Kato, T.: Two space scattering theory, with applications to many body problems. J. Fac. Sci. Univ. Tokyo, Sec. IA24, 503-514 (1977) · Zbl 0395.47007 [9] Konno, R., Kuroda, S. T.: On the finiteness of perturbed eigenvalues. J. Fac. Sci. Univ. Tokyo, Sec. IA8, 55-63 (1966) · Zbl 0149.10203 [10] Kuroda, S. T.: An introduction to scattering theory. Aarhus University Lecture Note, 1978 · Zbl 0407.47003 [11] Reed, M., Simon B.: Method of modern mathematical physics, Vol. II. Fourier analysis and self-adjointness. New York: Academic Press 1975 · Zbl 0308.47002 [12] Reed, M., Simon, B.: Method of modern mathematical physics, Vol. III. Scattering theory. New York: Academic Press 1978 · Zbl 0401.47001 [13] Reed, M. Simon, B. Method of modern mathematical physics, Vol. IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001 [14] Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton, NJ Princeton Univ. Press 1971 · Zbl 0232.47053 [15] Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton Univ. Press 1970 · Zbl 0207.13501 [16] Yajima, K.: Scattering theory for Schröedinger equations with potentials periodic in time. J. Math. Soc. Jpn29, 729-743 (1977) · Zbl 0356.47010 · doi:10.2969/jmsj/02940729 [17] Yajima, K.: An abstract stationary approach to three body scattering. J. Fac. Sci. Univ. Tokyo, Sec. IA25, 109-132 (1978) · Zbl 0398.35072 [18] Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1968 · Zbl 0152.32102 [19] Lions, L. J., Magenes, E.: Non-homogeneous boundary value problems and applications, I. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0223.35039 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.