×

zbMATH — the first resource for mathematics

A countably paracompact nonnormal space. (English) Zbl 0437.54027

MSC:
54G20 Counterexamples in general topology
54D65 Separability of topological spaces
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eric K. van Douwen, A technique for constructing honest locally compact submetrizable examples, Topology Appl. 47 (1992), no. 3, 179 – 201. · Zbl 0770.54026 · doi:10.1016/0166-8641(92)90029-Y · doi.org
[2] -, Hausdorff gaps and a nice countably paracompact non-normal space, Topology Proceedings 1 (1976), 239-242. · Zbl 0406.54018
[3] I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math. 28 (1976), no. 5, 998 – 1005. · Zbl 0336.54040 · doi:10.4153/CJM-1976-098-8 · doi.org
[4] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), no. 3, 505 – 516. · Zbl 0348.54014 · doi:10.1112/jlms/s2-14.3.505 · doi.org
[5] J. E. Vaughan, A countably compact, first countable, nonnormal \?\(_{2}\)-space, Proc. Amer. Math. Soc. 75 (1979), no. 2, 339 – 342. · Zbl 0412.54023
[6] Michael L. Wage, Non-normal spaces, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976) Academic Press, New York, 1977, pp. 371 – 381.
[7] M. L. Wage, W. G. Fleissner, and G. M. Reed, Normality versus countable paracompactness in perfect spaces, Bull. Amer. Math. Soc. 82 (1976), no. 4, 635 – 639. · Zbl 0332.54018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.