×

The irreducible imprimitive local Galois representations of prime dimension. (English) Zbl 0438.12007


MSC:

11S37 Langlands-Weil conjectures, nonabelian class field theory
20G05 Representation theory for linear algebraic groups
11S20 Galois theory
Full Text: DOI

References:

[1] Casselman, W., On the representations of \(Sl_2(k)\) related to binary quadratic forms, Amer. J. Math., 94, 810-834 (1972) · Zbl 0259.22017
[2] Gérardin, P., (Construction de Séries Discrt̂es \(p\)-adiques. Construction de Séries Discrt̂es \(p\)-adiques, Lecture Notes in Mathematics, No. 462 (1975), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0302.22002
[3] Hall, M., The Theory of Groups (1959), Macmillan: Macmillan New York · Zbl 0084.02202
[4] R. Howe; R. Howe
[5] Jacquet, H.; Langlands, R. P., (Automorphic Forms on GL(2). Automorphic Forms on GL(2), Lecture Notes in Mathematics No. 114 (1970), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0236.12010
[6] Kutzko, P., The Characters of the Binary Modular Congruence Groups, (Thesis (1972), University of Wisconsin) · Zbl 0374.20031
[7] \( \textsc{P. Kutzko} Gl_2\)Amer. J. Math.; \( \textsc{P. Kutzko} Gl_2\)Amer. J. Math. · Zbl 0421.22012
[8] \( \textsc{P. Kutzko} Gl_2\); \( \textsc{P. Kutzko} Gl_2\)
[9] Lang, S., Algebraic Numbers (1964), Addison-Wesley: Addison-Wesley Reading, Mass. · Zbl 0211.38501
[10] Mackey, G. W., On induced representations of groups, Amer. J. Math., 73, 576-591 (1951) · Zbl 0045.30305
[11] Serre, J.-P, (Corps Locaux (1962), Hermann: Hermann Paris) · Zbl 0137.02601
[12] J. A. Shalika; J. A. Shalika · Zbl 0231.12016
[13] Sally, P.; Shalika, J. A., Characters of the discrete series of representations over a local field, (Proc. Nat. Acad. Sci. U.S.A., 61 (1968)), 1231-1237 · Zbl 0198.18203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.