×

Stable rank-2 vector bundles on \(\mathbb{P}^3\) with \(c_1=0\) and \(c_2=3\). (English) Zbl 0438.14009


MSC:

14D22 Fine and coarse moduli spaces
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Barth, W.: Some properties of stable rank-2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · doi:10.1007/BF01360864
[2] Barth, W.: Moduli of vector bundles on the projective plane. Invent. Math.42, 63-91 (1977) · Zbl 0386.14005 · doi:10.1007/BF01389784
[3] Barth, W., Elencwajg, G.: Concernant la cohomologie des fibrés algebriques stables sur ? n (C) Lecture Notes in Mathematics, Vol. 683, pp. 1-24. Berlin, Heidelberg, New York Springer 1978 · Zbl 0381.55005
[4] Barth, W., Hulek, K.: Monads and moduli of vector bundles. Manuscripta Math.25, 323-347 (1978) · Zbl 0395.14007 · doi:10.1007/BF01168047
[5] Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.79, 121-138 (1956) · Zbl 0079.17001 · doi:10.2307/2372388
[6] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Berlin, Heidelberg New York: Springer 1977 · Zbl 0367.14001
[7] Hartshorne, R.: Stable vector bundles of rank 2 on ?3. Math. Ann.238, 229-280 (1978) · Zbl 0411.14002 · doi:10.1007/BF01420250
[8] Hartshorne, R.: Stable reflexive sheaves. Math. Ann.254, 121-176 (1980) · doi:10.1007/BF01467074
[9] Kleiman, S.: Relative duality for quasi-coherent sheaves (preprint) · Zbl 0403.14003
[10] Le Potier, J.: Fibrés stables de rang 2 sur ?2(C). Math. Ann.241, 217-256 (1979) · Zbl 0405.14008 · doi:10.1007/BF01421207
[11] Maruyama, M.: Moduli of stable sheaves. J. Math. Kyoto Univ.18, 557-614 (1978) · Zbl 0395.14006
[12] Schneider, M.: Holomorphic vector bundles on ? n . Sem. Bourbaki530, (1978-1979)
[13] Schwarzenberger, R.L.E.: Vector bundles on algebraic surfaces. Proc. London Math. Soc.11, 601-622 (1961) · Zbl 0212.26003 · doi:10.1112/plms/s3-11.1.601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.