×

The theorem of Grauert-Mülich-Spindler. (English) Zbl 0438.14015


MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C20 Divisors, linear systems, invertible sheaves
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Grothendick, A., Dieudonné, J.: Élements de géométrie algébrique, Chaps 0 III, and TV. Publ. Math. I.H.E.S. 17, 20, 24, 28, 32
[2] Barth, W.: Some properties of stable rank-2 vector bundles onP n. Math. Ann.226, 125-150 (1977) · doi:10.1007/BF01360864
[3] Gieseker, D.: On a theorem of Bogomolov on Chern classes of stable bundles. Amer. J. Math.101, 77-85 (1979) · Zbl 0431.14005 · doi:10.2307/2373939
[4] Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensional komplexprojektiven Raum. Manuscripta math.16, 75-100 (1975) · Zbl 0318.32027 · doi:10.1007/BF01169064
[5] Harder, G., Narssimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann.212, 215-248 (1975) · Zbl 0324.14006 · doi:10.1007/BF01357141
[6] Hartshorne, R.: Ample vector bundles. Publ. Math. I.H.E.S.29, 63-94 (1966) · Zbl 0173.49003
[7] Kleiman, S.L.: Towards a numerical theory of ampleness. Ann. Math.84, 293-344 (1966) · Zbl 0146.17001 · doi:10.2307/1970447
[8] Maruyama, M.: Moduli of stable sheaves. I. J. Math. Kyoto Univ.17, 91-126 (1977) · Zbl 0374.14002
[9] Maruyama, M.: Boundedness of semi-stable sheaves of small ranks. Nagoya Math. J.78, 65-94 (1980) · Zbl 0456.14011
[10] Maruyama, M.: On boundedness of families of torsion free sheaves (to appear in J. Math. Kyoro Univ.) · Zbl 0495.14009
[11] Mumford, D.: Geometric invariant theory. Berlin, Heidelberg, New York: Springer 1965 · Zbl 0147.39304
[12] Seidenberg, A.: The hyperplane sections of normal varieties. Trans. Am. Math. Soc.69, 357-386 (1950) · Zbl 0040.23501
[13] Shatz, S.: The decomposition and specialization of algebraic families of vector boundles. Compositio Math.35, 163-187 (1977) · Zbl 0371.14010
[14] Spindler, H.: Der Satz von Grauert-Mülich für beliebige semistabile bolomorphe Vektorbündel über demn-dimensionalen komplex-projektiven Raum. Math. Ann.243, 131-141 (1979) · Zbl 0435.32018 · doi:10.1007/BF01420420
[15] Van de Ven, A.: On uniform vector bundles. Math. Ann.195, 245-248 (1972) · Zbl 0215.43202
[16] Gieseker, D.: Stable vector bundles and the Frobenius morphism. Ann. Sci. École Norm. Sup.6, 95-101 (1973) · Zbl 0281.14013
[17] Hartshorne, R.: Ample vector bundles on curves. Nagoya Math. J.43, 73-90 (1971) · Zbl 0218.14018
[18] Barth, W., Hulek, K.: Monads and moduli of vector bundles. Manuscripta math.25, 323-347 (1978). · Zbl 0395.14007 · doi:10.1007/BF01168047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.