×

zbMATH — the first resource for mathematics

Tangentially distal flows. (English) Zbl 0438.58024

MSC:
37C10 Dynamics induced by flows and semiflows
54H20 Topological dynamics (MSC2010)
37A99 Ergodic theory
28D20 Entropy and other invariants
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. V. Anosov,Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math.90 (1967). (Amer. Math. Soc. Trans., 1969.) · Zbl 0176.19101
[2] V. Arnold,Small denominators I. Mappings of the circumference onto itself, Izu. Akad. Nauk SSSR Ser. Mat.25 (1961), 21–86; Amer. Math. Soc. Transl. Ser. 2,46 (1965), 213–284.
[3] R. Bowen,Weak mixing and unique ergodicity on homogeneous spaces, Israel J. Math.23 (1976), 267–273. · Zbl 0338.43014
[4] R. Bowen and D. Ruelle,The ergodic theory of Axiom A flows, Invent. Math.29 (1975), 181–202. · Zbl 0311.58010
[5] S. G. Dani,Bernoullian Translations and minimal horospheres on homogeneous spaces, J. Indian Math. Soc.39 (1976), 245–284. · Zbl 0435.28015
[6] R. Ellis,Lectures on Topological Dynamics, W. A. Benjamin, 1969. · Zbl 0193.51502
[7] R. Ellis and W. Perrizo,Unique ergodicity of flows on homogeneous spaces, Israel J. Math.29 (1978), 276–284. · Zbl 0383.22004
[8] W. H. Gottschalk and G. A. Hedlund,Topological Dynamics, Amer. Math. Soc. Colloquium Publications Vol. 36, Providence, 1955.
[9] S. Helgasson,Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[10] M. Herman,Sur la conjugaison di flérentiable des difféomorphisms du cercle à des rotations, thesis, L’Université Paris Sud, Centre d’Orsay, 1975.
[11] A. N. Kolmogorov,On dynamical systems with an integral invariant on the torus, Dokl. Akad. SSSR43 (1953), 763–766 (Russian). · Zbl 0052.31904
[12] S. Lang,Differential Manifolds, Addison-Wesley 1972.
[13] B. Marcus,Unique ergodicity of the horocycle flow: variable negative curvature case, Israel J. Math.21 (1975), 133–144. · Zbl 0314.58013
[14] G. A. Margulis,Certain measures associated with U-flows on compact manifolds, {jtFunctional Anal. Appl.} {vn4}({sn1}) ({dy1970}) (transl. from Russian). · Zbl 0245.58003
[15] C. C. Moore,Distal affine transformation groups, Amer. J. Math.90 (1968), 733–751. · Zbl 0195.52604
[16] V. I. Oseledec,A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obšč.19 (1968), 179–210. English translation: Transl. Moscow Math. Soc.19 (1968), 197–231.
[17] R. S. Palais,A global formulation of the Lie theory of transportation groups, Mem. Amer. Math. Soc.22 (1957), 1–123. · Zbl 0178.26502
[18] W. Parry,Zero entropy of distal and related transformations, inTopological Dynamics (J. Auslander and W. H. Gottschalk, eds.), Benjamin, New York, 1968. · Zbl 0193.51602
[19] W. Parry,A note on cocycles in ergodic theory, Compositio Math.28 (1974), 343–350. · Zbl 0287.28011
[20] J. Plante,Anosov flows, Amer. J. Math.94 (1972), 729–753. · Zbl 0257.58007
[21] M. S. Raghunathan,A proof of Oseledec’s multiplicative ergodic theorem, Advances in Math. (to appear). · Zbl 0415.28013
[22] M. Rees,On the structure of minimal distal transformation groups with topological manifolds as phase spaces, thesis, University of Warwick, 1977.
[23] D. Ruelle,An inequality for the entropy of differentiable maps, to appear. · Zbl 0432.58013
[24] W. Veech,Unique ergodicity of the generalized horocycle flow, Amer. J. Math.99 (1977), 827–859. · Zbl 0365.28012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.