×

zbMATH — the first resource for mathematics

Monotone Einschließung durch Verfahren vom Regula-falsi-Typ unter Verwendung eines verallgemeinerten Steigungsbegriffes. (German) Zbl 0438.65050

MSC:
65H10 Numerical computation of solutions to systems of equations
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
PDF BibTeX Cite
Full Text: DOI
References:
[1] Kantorowitsch, L.: The method of successive approximations for functional equations. Acta Math.71, 63–97 (1939). · Zbl 0021.13604
[2] Ortega/Rheinboldt: Iterative solutions of nonlinear equations in several variables. Academic Press 1970. · Zbl 0241.65046
[3] Rall, L.: Computational solution of nonlinear operator equations. New York: Wiley 1969. · Zbl 0175.15804
[4] Schmidt, J. W.: Eine Übertragung der Regula falsi auf Gleichungen in Banachräumen I. ZAMM43, 1–8 (1963). · Zbl 0115.34002
[5] Schmidt, J. W.: Eine Übertragung der Regula falsi auf Gleichungen in Banachräumen II. ZAMM43, 97–100 (1963). · Zbl 0115.34002
[6] Schmidt/Leonhardt: Eingrenzung von Lösungen mit Hilfe der Regula falsi. Computing6, 318–329 (1970). · Zbl 0231.65053
[7] Schneider, N.: Monotonie und Einschließung unter Verwendung eines verallgemeinerten Steigungsbegriffes. Dissertation, TU Berlin, 1979.
[8] Stoer/Bulirsch: Einführung in die Numerische Mathematik II. Berlin-Heidelberg-New York: Springer 1973. · Zbl 0257.65001
[9] Vandergraft, J.: Newton’s method for convex operators in partially ordered spaces. SIAM, J. Appl. Math.16, 1208–1222 (1967). · Zbl 0186.05701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.