zbMATH — the first resource for mathematics

All uncountable cardinals can be singular. (English) Zbl 0439.03036

03E55 Large cardinals
03E35 Consistency and independence results
Full Text: DOI
[1] K. Devlin and R. Jensen,Marginalia to a theorem of Silver, in Proc. Internat. Summer Institute and Logic Colloq., Lecture Notes in Math.499, Springer-Verlag, Berlin, 1975, pp. 115–143. · Zbl 0339.02058
[2] J. Dodd and R. Jensen,The core model, handwritten notes. · Zbl 0457.03051
[3] U. Felgner,Comparison of the axioms of local and universal choice, Fund. Math.71 (1971), 73–62. · Zbl 0255.02065
[4] T. J. Jech,Lectures in set theory with particular emphasis on the method of forcing, Lecture Notes in Mathematics217, Springer-Verlag, Berlin, 1971, p. 137. · Zbl 0236.02048
[5] T. J. Jech,The Axiom of Choice, North-Holland, Amsterdam, 1977. · Zbl 0259.02051
[6] A. Levy,Independence results in set theory by Cohen’s Method IV (abstract), Notices Amer. Math. Soc.10 (1963), 592–593.
[7] A. Levy,Definability in Axiomatic Set Theory II, inMath Logic and Formulations of Set Theory, Proc. Internat. Colloq. (J. Bar-Hillel, ed.), North-Holland, Amsterdam, 1970, pp. 129–145.
[8] K. Prikry,Changing measurable, Dissertationes Math.68 (1970), 5–52.
[9] J. R. Shoenfield,Unramified forcing in ’Axiomatic Set Theory’, Proc. Symposia in Pure Math.13 (D. Scott, ed.), Providence, Rhode Island, 1971, pp. 351–382. · Zbl 0245.02056
[10] E. Speker,Zur Axiomatik der Mengenlehre, Z. Math. Logik Grundlagen Math.3 (1957), 173–210. · Zbl 0079.07605 · doi:10.1002/malq.19570031302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.