×

zbMATH — the first resource for mathematics

Hausdorff dimension of quasi-circles. (English) Zbl 0439.30032

MSC:
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Akaza, Local property of the singular sets of some Kleinian groups,Tohoku Math. J.,25 (1973), 1–22. · JFM 51.0269.01 · doi:10.2748/tmj/1178241411
[2] A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups,Amer. J. Math.,88 (1966), 722–736. · Zbl 0145.28203 · doi:10.2307/2373151
[3] —-, The exponent of convergence of Poincaré series,Proc. London Math. Soc. (3),18 (1968), 461–483. · Zbl 0162.38801 · doi:10.1112/plms/s3-18.3.461
[4] L. Bers, Uniformization by Beltrami equations,Comm. Pure Appl. Math.,14 (1961), 215–228. · Zbl 0138.06101 · doi:10.1002/cpa.3160140304
[5] —-, Uniformization, moduli and Kleinian groups,Bull. London Math. Soc.,4 (1972), 257–300. · Zbl 0257.32012 · doi:10.1112/blms/4.3.257
[6] —-, On Hilbert’s 22nd problem,Proc. Symp. Pure Math.,28 (1976), 559–609.
[7] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,Springer Lecture Notes in Math.,470 (1975). · Zbl 0308.28010
[8] V. Chuckrow, On Schottky groups with applications to Kleinian groups,Ann. of Math.,88 (1968), 47–61. · Zbl 0186.40603 · doi:10.2307/1970555
[9] G. A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature,Annals of Math.,35 (1934), 787–808. · Zbl 0010.22107 · doi:10.2307/1968495
[10] A. N. Livshits, Homology properties of Y-systems,Math. Notes Acad. Sci. USSR,19 (1971), 758–763. · Zbl 0235.58010 · doi:10.1007/BF01109040
[11] A. Marden, Isomorphisms between Fuchsian groups, inAdvances in Complex Function Theory, Lecture Notes in Math.,505, Springer Verlag, 1976 (Kirwan & Zalcman Ed.). · Zbl 0335.20024
[12] M. Morse,Symbolic dynamics (lecture notes), Institute for Advanced Study, Princeton.
[13] G. D. Mostow,Strong rigidity of locally symmetric spaces, Princeton Univ. Press, 1973, p. 178. Also: Rigidity of real hyperbolic space forms,Publ. math. IHES, vol.34 (1968), 53–104. · Zbl 0189.09402
[14] J. Nielsen, Undersuchungen zur Topologie der geschlossenen zweiseitigen Flächen,Acta Math.,50 (1927), 189–358. · JFM 53.0545.12 · doi:10.1007/BF02421324
[15] S. J. Patterson, The limit set of a Fuchsian group,Acta. Math.,136 (1976), 241–273. · Zbl 0336.30005 · doi:10.1007/BF02392046
[16] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas,Comm. Math. Phys.,9 (1968), 267–278. · Zbl 0165.29102 · doi:10.1007/BF01654281
[17] —-, Zeta-functions for expanding maps and Anosov flows,Inventiones Math.,34 (1975), 231–242. · Zbl 0329.58014 · doi:10.1007/BF01403069
[18] C. L. Siegel,Topics in complex function theory, vol. 2, Wiley-Interscience, 1971. · Zbl 0211.10501
[19] Ya. G. Sinai, Gibbs measures in ergodic theory,Russ. Math. Surveys, no. 4 (166), 1972, 21–64. · Zbl 0246.28008
[20] W. Veech,A second course in complex analysis, Benjamin, 1967. · Zbl 0145.29901
[21] A. Zygmund,Trigonometric series, vol. 1, Cambridge, 1968. · Zbl 0157.38204
[22] W. Thurston,Geometry and Topology of 3-manifolds, section 5\(\cdot\)9, mimeographed notes, Princeton Univ., 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.