×

Maximum modulus sets. (English) Zbl 0439.32007


MSC:

32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs
32A40 Boundary behavior of holomorphic functions of several complex variables
32A38 Algebras of holomorphic functions of several complex variables
32T99 Pseudoconvex domains
32E20 Polynomial convexity, rational convexity, meromorphic convexity in several complex variables
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] H. ALEXANDER, Polynomial approximation and hulls in sets of finite linear measure in cn, Amer. J. Math., 93 (1971), 65-74. · Zbl 0221.32011
[2] A. ANDREOTTI and R. NARASIMHAN, A topological property of Runge pairs, Ann. Math., (2) 76 (1962), 499-509. · Zbl 0178.42703
[3] E. BISHOP, A generalization of the stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. · Zbl 0104.09002
[4] D.E. BLAIR, Contact manifolds in Riemannian geometry, Springer Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. · Zbl 0319.53026
[5] A. BROWDER, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc., 67 (1961), 515-516. · Zbl 0107.09501
[6] D. BURNS and E.L. STOUT, Extending functions from submanifolds of the boundary, Duke Math., J., 43 (1976), 391-404. · Zbl 0328.32013
[7] H. CARTAN, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99. · Zbl 0083.30502
[8] J. CHAUMAT and A.M. CHOLLET, Ensembles pics pour A∞ (D), Ann. Inst. Fourier, Grenoble, XXIX (1979), 171-200. · Zbl 0398.32004
[9] A.M. DAVIE and B. ØKSENDAL, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), 81-87. · Zbl 0232.46055
[10] H. FEDERER, Geometric measure theory, Springer-Verlag New York, Inc., New York, 1969. · Zbl 0176.00801
[11] T. DUCHAMP, The classification of Legendre embeddings, to appear.
[12] J.E. FORNAESS, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. · Zbl 0334.32020
[13] R. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, 1965. · Zbl 0141.08601
[14] C.D. HILL and G. TAIANI, Families of analytic discs in cn with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Sci., (IV) V, (1978), 327-380. · Zbl 0399.32008
[15] K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, 1962. · Zbl 0117.34001
[16] H. HUREWICZ and H. WALLMAN, Dimension theory, Princeton University Press, Princeton, 1948. · Zbl 0036.12501
[17] V.S. KLEIN, Behavior of holomorphic functions at generating submanifolds of the boundary, doctoral dissertation, University of Washington, Seattle, 1979.
[18] H.B. LAWSON, Lectures on the quantitative theory of foliations, CBMS Regional Conference Series in Mathematics, Number 27, American Mathematical Society, Providence, Rhode Island, 1977. · Zbl 0343.57014
[19] L. LOOMIS and S. STERNBERG, Advanced calculus, Addison-Wesley, Reading, 1968. · Zbl 0162.35301
[20] J. MILNOR, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, 1965. · Zbl 0136.20402
[21] M. MÜLLER, Geometrisch untersuchungen allgemeiner und einiger spezieller pseudokonvexer gebiete, Bonner Math. Schriften, 78, Bonn, 1975. · Zbl 0331.32017
[22] S.I. PINCHUK, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. · Zbl 0292.32002
[23] M. RANGE and Y.-T. SIU, Ck approximation by holomorphic functions and \(ATT\)-closed forms on ck submanifolds of a complex manifold, Math. Ann., 210 (1974), 105-122. · Zbl 0275.32008
[24] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Indust., 1183, Hermann, Paris, 1952. · Zbl 0049.12602
[25] W. RUDIN, Peak interpolation manifolds of class C1, Pacific J. Math., 75 (1978), 267-279. · Zbl 0383.32007
[26] W. RUDIN, Lectures on the edge-of-the-wedge theorem, CBMS Regional Conference Series in Mathematics, Number 6, American Mathematical Society, Providence, Rhode Island, 1971. · Zbl 0214.09001
[27] W. RUDIN and E.L. STOUT, Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. · Zbl 0147.11601
[28] A. SADULLAEV, A boundary uniqueness theorem in cn, Math. USSR Sbornik, 30 (1976), 501-514. · Zbl 0385.32007
[29] J. SCHWARTZ, Nonlinear functional analysis, Gordon and Breach, New York, 1969. · Zbl 0203.14501
[30] B. SHIFFMAN, On the continuation of analytic curves, Math. Ann., 184 (1970), 268-274. · Zbl 0176.38003
[31] N. SIBONY, Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Séminaire Pierre Lelong 1975-1976. Springer Lecture Notes in Mathematics, vol. 578, Springer-Verlag, Berlin, Heidelberg, New York, 1977. · Zbl 0382.32004
[32] K. STEIN, Analytische projektion komplexer mannigfaltigkeiten, Colloque sur les Fonctions de Plusieurs Variables, Brussels, 1953. George Throne, Leige and Masson, Paris, 1953. · Zbl 0052.08604
[33] K. STEIN, Die existenz komplexer basen zu holomorphen abbildungen, Math. Ann., 136 (1958), 1-8. · Zbl 0081.30202
[34] S. STERNBERG, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, 1964. · Zbl 0129.13102
[35] E.L. STOUT, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson and Belmont, 1971. · Zbl 0286.46049
[36] E.L. STOUT, Interpolation manifolds, Recent Developments in Several Complex Variables, Annals of Mathematics Studies, to appear. · Zbl 0486.32010
[37] A.E. TUMANOV, A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izvestija, 11 (1977), 370-377. · Zbl 0379.46048
[38] B.M. WEINSTOCK, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), 484-488. · Zbl 0413.32008
[39] R.O. WELLS, Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann., 179 (1969), 123-129. · Zbl 0167.21604
[40] R.O. WELLS, Real analytic subvarieties and holomorphic approximation, Math. Ann., 179 (1969), 130-141. · Zbl 0167.06704
[41] A. ZYGMUND, Trigonometric series, vol. I., Cambridge University Press, Cambridge, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.